Deep Learning — Paper List
Generative Model
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets . In Advances in neural information processing systems
Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes . arXiv preprint arXiv:1312.6114.
Bengio, Y., Yao, L., Alain, G. and Vincent, P., 2013. Generalized denoising auto-encoders as generative models . In Advances in Neural Information Processing Systems (pp. 899-907).
Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A., 2008, July. Extracting and composing robust features with denoising autoencoders . In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). ACM.
Generative Adversarial Networks
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative adversarial nets , NIPS (2014).
Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks , NIPS (2016).
Radford, A., Metz, L. and Chintala, S., Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. (2015)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. Improved techniques for training gans. NIPS (2016).
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN: Interpretable Representation Learning by Information Maximization Generative Adversarial Nets , NIPS (2016).
Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016).
Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004. (2016).
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative adversarial text to image synthesis. JMLR (2016).
Antipov, G., Baccouche, M., & Dugelay, J. L. Face Aging With Conditional Generative Adversarial Networks. arXiv preprint arXiv:1702.01983. (2017).
Liu, Ming-Yu, and Oncel Tuzel. Coupled generative adversarial networks. NIPS (2016).
Denton, E.L., Chintala, S. and Fergus, R., 2015. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS (2015).
Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., & Courville, A. Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016).
Variational Autoencoders
D. Kingma, M. Welling, Auto-Encoding Variational Bayes , ICLR, 2014
Carl Doersch, Tutorial on Variational Autoencoders arXiv, 2016
Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, Attribute2Image: Conditional Image Generation from Visual Attributes , ECCV, 2016
Jacob Walker, Carl Doersch, Abhinav Gupta, Martial Hebert, An Uncertain Future: Forecasting from Static Images using Variational Autoencoders , ECCV, 2016
Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, Jeff Clune, Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , arXiv, 2016
Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Brendan Frey, Adversarial Autoencoders , ICLR, 2016
Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, Autoencoding beyond pixels using a learned similarity metric , ICML, 2016
Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, David Forsyth, Learning Diverse Image Colorization , arXiv, 2016
Jiajun Lu, Aditya Deshpande, David Forsyth, CDVAE: Co-embedding Deep Variational Auto Encoder for Conditional Variational Generation , arXiv, 2016
Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, Semi-Supervised Learning with Deep Generative Models , NIPS, 2014
Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther, Auxiliary Deep Generative Models arXiv, 2016
Raymond Yeh, Ziwei Liu, Dan B Goldman, Aseem Agarwala, Semantic Facial Expression Editing using Autoencoded Flow arXiv, 2016
Model Compression
Denton, Emily L., et al. “Exploiting linear structure within convolutional networks for efficient evaluation.” Advances in Neural Information Processing Systems. 2014.
Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. “Flattened convolutional neural networks for feedforward acceleration.” arXiv preprint arXiv:1412.5474 (2014).
Gong, Yunchao, et al. “Compressing deep convolutional networks using vector quantization.” arXiv preprint arXiv:1412.6115 (2014).
Han, Song, et al. “Learning both weights and connections for efficient neural network.” Advances in Neural Information Processing Systems. 2015.
Guo, Yiwen, Anbang Yao, and Yurong Chen. “Dynamic Network Surgery for Efficient DNNs.” Advances In Neural Information Processing Systems. 2016.
Gupta, Suyog, et al. “Deep Learning with Limited Numerical Precision.” ICML. 2015.
Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training deep neural networks with binary weights during propagations.” Advances in Neural Information Processing Systems. 2015.
Courbariaux, Matthieu, et al. “Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1.” arXiv preprint arXiv:1602.02830 (2016).
Han, Song, Huizi Mao, and William J. Dally. “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding.” arXiv preprint arXiv:1510.00149 (2015).
Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size.” arXiv preprint arXiv:1602.07360 (2016).
RNN
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks , ICML 2013
S. Hochreiter, and J. Schmidhuber, J., Long short-term memory , Neural computation, 1997 9(8), pp.1735-1780
F.A. Gers, and J. Schmidhuber, J., Recurrent nets that time and count , IJCNN 2000
K. Greff , R.K. Srivastava, J. KoutnÃk, B.R. Steunebrink, and J. Schmidhuber, LSTM: A search space odyssey , IEEE transactions on neural networks and learning systems, 2016
K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation , ACL 2014
R. Jozefowicz, W. Zaremba, and I. Sutskever, An empirical exploration of recurrent network architectures , JMLR 2015
Recurrent Architectures: LSTM, GRU, RNN
Survey Papers
Training
Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss. arXiv preprint arXiv:1603.05118 (2016).
Arjovsky, Martin, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. arXiv preprint arXiv:1511.06464 (2015).
Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015).
Cooijmans, Tim, et al. Recurrent batch normalization. arXiv preprint arXiv:1603.09025 (2016).
Architectural Complexity Measures
RNN Variants
Visualization
Advanced CNN Architectures
K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition , CVPR 2016
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Identity Mappings in Deep Residual Networks , ECCV 2016
Gao Huang, Zhuang Liu, Kilian Q. Weinberger, Laurens van der Maaten: Densely Connected Convolutional Networks
Andreas Veit, Michael Wilber, Serge Belongie, Residual Networks Behave Like Ensembles of Relatively Shallow Networks , NIPS 2016
Klaus Greff, Rupesh K. Srivastava & Jürgen Schmidhuber, Highway and Residual Networks Learn Unrolled Iterative Estimation
Advanced Training Techniques
D. Kingma, and J. Ba, Adam: a method for stochastic optimization , ICLR 2015
J. Dean et al., Large scale distributed deep networks , NIPS 2012
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting , JMLR 2014
S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift , ICML 2015
K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification , ICCV 2015
Object Detection
Girshick, Ross and Donahue, Jeff and Darrell, Trevor and Malik, Jitendra, Rich feature hierarchies for accurate object detection and semantic segmentation , CVPR 2014
He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , ECCV 2014
Jifeng Dai, Yi Li, Kaiming He, Jian Sun R-FCN: Object Detection via Region-based Fully Convolutional Networks , NIPS 2016
Girshick, Ross, Fast R-CNN , ICCV 2015
Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , CVPR 2015
Erhan, Dumitru and Szegedy, Christian and Toshev, Alexander and Anguelov, Dragomir, Scalable Object Detection using Deep Neural Networks , CVPR 2014
Bell, Sean and Lawrence Zitnick, C and Bala, Kavita and Girshick, Ross, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks , CVPR 2016
Redmon, Joseph and Divvala, Santosh and Girshick, Ross and Farhadi, Ali, You Only Look Once: Unified, Real-Time Object Detection , CVPR 2016
Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy, Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C, SSD: Single Shot MultiBox Detector , ECCV 2016
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie, Feature Pyramid Networks for Object Detection , arXiv 2016
Huang, Jonathan and Rathod, Vivek and Sun, Chen and Zhu, Menglong and Korattikara, Anoop and Fathi, Alireza and Fischer, Ian and Wojna, Zbigniew and Song, Yang and Guadarrama, Sergio and others, Speed/accuracy trade-offs for modern convolutional object detectors , arXiv 2016
Adversarial Samples
Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks , ECCV 2014
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , arXiv:1312.6034v2
Alexey Dosovitskiy and Thomas Brox, Inverting Visual Representations with Convolutional Networks , CVPR 2016
Anh Nguyen, Jason Yosinski, and Jeff Clune, Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images , CVPR 2015
Christian Szegedy, et al., Intriguing properties of neural networks , arXiv preprint arXiv:1312.6199v4
Seyed-Mohsen Moosavi-Dezfooli, et al, Universal adversarial perturbations , arXiv preprint arXiv:1610.08401v2
Ian J. Goodfellow, et al, Explaining and Harnessing Adversarial Examples , arXiv preprint arXiv:1412.6572
A. Kurakin et al., Adversarial examples in the physical world , ICLR 2017
D. Krotov and J. Hopfield, Dense Associative Memory is Robust to Adversarial Inputs , arXiv preprint arXiv:1701.00939