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Abstract— In this paper, a set of accountable protocols denoted
as AccountTrade is proposed for big data trading among
dishonest consumers. For achieving a secure big data trad-
ing environment, AccountTrade achieves book-keeping ability
and accountability against dishonest consumers throughout the
trading (i.e., buying and selling) of datasets. We investigate
the consumers’ responsibilities in the dataset trading, then we
design AccountTrade to achieve accountability against dishonest
consumers that are likely to deviate from the responsibilities.
Specifically, a uniqueness index is defined and proposed, which
is a new rigorous measurement of the data uniqueness for this
purpose. Furthermore, several accountable trading protocols are
presented to enable data brokers to blame the misbehaving
entities when misbehavior is detected. The accountability of
AccountTrade is formally defined, proved, and evaluated by an
automatic verification tool as well as extensive simulation with
real-world datasets. Our evaluation shows that AccountTrade
incurs at most 10-kB storage overhead per file, and it is capable
of 8–1000 concurrent data upload requests per server.

Index Terms— Data trading, accountability, fuzzy
decuplication.

I. INTRODUCTION

THE data trading industry has been increasing rapidly
(e.g., CitizenMe, DataExchange, Datacoup, Factual, Qlik,

XOR Data Exchange, Terbine). These data brokers provide
B2C or C2C dataset trading services, and they are the coun-
terparts of physical commodities trading platforms, e.g., Ebay
and Amazon. Trading of digital datasets has become a trend
as the trading of digital datasets became a promising business
in the big data era [1]. Although profits lie in big data, organi-
zations possessing large-scale datasets (companies or research
institutes) do not participate in the data trading due to serious
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concerns in user-generated data [27], [28], [35], [52]. One of
the major concerns is that we do not have accountability
in the digital data trading [21], [25], [40]. The concerns are
particularly huge due to the non-physical nature of the digital
dataset – replication and delivery are almost costless when
compared to physical commodities. Concerns arise at the
broker side: data owners worry that brokers may illegally
disclose or resell the datasets they outsourced to the brokers.
On the other hand, concerns arise at the consumer side as
well: dishonest consumers may illegally resell the purchased
datasets. Addressing the first issue is possible because that was
one of FTC’s main concerns [16], and FTC has managed to
detect and punish dishonest data brokers already [2]–[4]; and
2) achieving accountability in small-size systems has shown
to be possible [21], [24]. Therefore, it is possible to monitor
the broker’s side. The second issue is hard to address. It is
reasonable to monitor the broker’s side (recent movement also
shows that [16]), but it is hardly acceptable to monitor the
consumers. Firstly, it is not lawful to lively monitor individual
consumers’ behavior because of the privacy implications.
Secondly, the history of Internet suggests that any service
requires installation of a heavy monitoring system cannot
survive because it leads to bad user experiences.

We extend from our conference publication [29] and
propose a suite of accountable protocols, denoted as
AccountTrade, for big data trading hosted by data brokers.
AccountTrade enables brokers to attain accountability against
dishonest consumers throughout the trading by detecting their
misbehavior. The trading-related misbehavior defined in this
paper includes tax evasion, denial of purchase, and resale of
others’ datasets. Note that we do not try to detect idea-wise
plagiarism (e.g., novels with similar plots, images taken at the
same scenery spot, videos taken with similar angles) because
originality is a subjective factor that is hardly decidable even
by human. Instead, we propose to detect the blatant copy
(not an exact copy) in the datasets uploaded by owners,
by detecting whether the given datasets are derived from
others that have been uploaded before. Notably, the fuzzy
copy-detection in table-type datasets or JSON-like datasets
has not been studied yet to the best of our knowledge, and
AccountTrade is the first to propose a feasible mechanism.
The extra overhead incurred at the ordinary consumers’ side
is negligible when compared to the overhead of datasets
uploading/downloading, and the extra overhead introduced at
the brokers’ side is also acceptable. We define a formal model
for accountability which is proved and quantitatively analyzed.
For the symbolic model, we use automatic proof with formal
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language to prove the accountability, and for the computational
model, we quantitatively analyze the accountability guarantee
of AccountTrade.

Several challenges exist in designing AccountTrade. Firstly,
the boundary for whether sale is legitimate or not is hard
to define. There are two reasons for that: (1) dishonest
sellers may bring perturbation into others’ datasets before
they try to resell them; defining how much overlap will
make a dataset copy of another one is challenging; (2) data
brokers buy and sell a huge number of large-scale datasets,
but illegal resale monitoring inherently involves certain form
of scanning over all datasets that they possess. Finally,
as aforementioned, AccountTrade should impose negligible
overhead to consumers and practically acceptable overhead
to brokers. We have addressed these challenges by defining
and proposing uniqueness index in AccountTrade, which is a
new rigorous measurement of the data uniqueness. This index
enables AccountTrade to detect dataset resale efficiently even
in trading of big data.

We have the following contributions:
1. We define formal models of accountability (symbolic

and computational ones) for big data trading, and we design
accountable protocols Upload, Examine, and Download that
are provably accountable (Proof in § IV).

2. We efficiently detect illegal resale by defining and propos-
ing the uniqueness index that is consistent with state-of-the-
art data similarity comparison for different types. Notably,
no such mechanism is available for table-type datasets, and
existing mechanisms for JSON-like datasets are not scalable.
Therefore, we present novel mechanisms to efficiently measure
the similarity for those types.

3. AccountTrade is highly scalable with both number and
volume of datasets. The extra overhead introduced at the users’
side remains constant regardless of the data brokers’ scale, and
the extra overhead at the brokers’ side grows linearly with the
number of datasets only. The volumes of existing datasets do
not contribute to the extra overhead.

II. DEFINITIONS AND MODELS

A. Data Trading With Brokers

In our model, there are three entities: brokers, sellers, and
buyers. Each entity has its own trading-related responsibilities.

1) Broker: Brokers provide shopping services in general
(product listing, description, payment, delivery, etc.). Besides,
they are in charge of book-keeping for accounting purposes
(i.e., recording trading transactions), and they also need to
define what type of transaction is considered as reselling and
should be prohibited.

2) Seller: Sellers are required to sell only the datasets
that are collected/generated by themselves, and they should
not resell others’ datasets by slightly perturbing them.
Also, they have to correctly file the tax report regarding
the dataset transaction. They should not interrupt brokers’
book-keeping.

3) Buyer: Buyers should not disturb brokers’ book-keeping.
Some areas are important but orthogonal to ours. Descrip-

tion of datasets’ quality/utility for buyers [49] is complemen-
tary. Furthermore, we let sellers set the prices, but more

sophisticated pricing mechanism may be considered. The
accountability we study for data trading is independent from
them.

B. Adversary Model & Channel Assumption

1) Malicious Users: Users may try to deviate from the
responsibilities described above. Namely, they may e.g., dis-
rupt the brokers’ data trading service, deny cleared transactions
(i.e., paid and sold) and resell previously purchased datasets.
A user is defined as a dishonest user if he avoided any of
the trading-related responsibilities, and such behavior (either
selling or buying) is denoted as misbehavior. Note that, when
illegally selling previously purchased datasets, attackers may
try to perturb the dataset to bypass copy detection mechanisms.

2) Trusted Brokers: We assume the brokers can be trusted,
e.g., the role is played by the organizations that are strictly
supervised with great transparency or commercial compa-
nies with high reputation. Similar assumptions can be found
in [40], and the assumption that the brokers will be strictly
supervised is also consistent with the FTC’s recent action [16].

3) Channel Assumption: We assume both buyers and sellers
interact with the broker via secure communication chan-
nels. The communication is encrypted and decrypted with
pre-distributed keys to guarantee that the dataset is not open to
the public. This also implies authentication is in place since the
broker needs to use the correct entity’s key for communication.

C. Accountability Model

The modeling in [46] is inherited to define a formal account-
ability model for AccountTrade. Our accountable protocols are
characterized by two properties:

• Fairness: honest entities are never blamed.
• Goal-centered completeness: if accountability is not pre-

served due to malicious entities’ misbehavior, at least one
of them is blamed.

General completeness, which states that all misbehaving enti-
ties must be blamed, is impossible to satisfy because “some
misbehavior cannot be observed by any honest party” [46].
AccountTrade also requires individual accountability, which
states that it must be able to correctly blame one or more
parties unambiguously, rather than to blame a group without
knowing the exact misbehaving person.

We define two formal models of accountability with differ-
ent purposes. symbolic individual accountability is defined in
a setting where all building blocks are abstracted as ideal black
boxes. The symbolic model is amenable to automatic security
verification protocols, e.g., [8], who verify whether security
flaws exist. Then, computational individual accountability
without the abstraction is defined to give a quantitative analysis
of individual accountability guarantee.

1) Symbolic Individual Accountability: A verdict is a
boolean formula ψ which includes propositions having the
form dis(e), where dis(e) is a statement “the entity e misbe-
haved”. If the broker states ψ = dis(A)∧dis(B), it means the
broker blames A and B , and the blame is fair if A and B indeed
misbehaved. A run r is an actual run of a protocol. We use
the expression r ⇒ ψ to denote that ψ evaluates to true in
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TABLE I

IMPORTANT SYMBOLS AND THEIR DEFINITIONS

the run r . Then, if a run r contains misbehavior(s) and ψ
describes the misbehaved entities in r , we call φ = (r ⇒ ψ)
an accountability constraint of r because the broker must state
ψ after observing the run r . We use � to denote the set of
all accountability constraints of all possible runs in a given
protocol P , denoted as P’s accountability property. We say
an entity J ensures � after observing a run r if either no
misbehavior occurred in r or J states ψ and (r ⇒ ψ) ∈ �.

Definition 1 (Symbolic): Let P be a protocol, J be its
entity, and � be P’s accountability property. We say P is
individually �-accountable w.r.t. J if

• Fairness: verdicts stated by J all evaluate to true,
• Goal-centered completeness: for every run r of P,

J ensures � after observing it, and
• Individual accountability: the only logical operators in

J ’s verdicts are ‘∧’.
2) Computational Individual Accountability: The compu-

tational version is similar to the symbolic one except that
we consider the leveraged building blocks may be imperfect.
For example, there are always negligible chances for the
attacker to break (almost all) cryptographic tools (e.g., by a
random guess or with negligible advantage), and the leveraged
predictive models can hardly be perfect regarding the precision
and recall. By reusing the notations in the symbolic model,
we present the following definition.

Definition 2 (Computational): Let P be a protocol, J be
its entity, and � be P’s accountability property. We say P is
individually (�, η, χ)-accountable w.r.t. J if

• Fairness: for any verdict ψ stated by J , Pr[ψ = F] is
bounded by η,

• Goal-centered completeness: for any run r of P,
Pr[¬(J ensures �)] is bounded by χ , and

• Individual accountability: the only logical operators in
J ’s verdicts are ‘∧’.

D. Defining AccountTrade

The expression [{entity : input}] →P [{entity : output}] is
used to define the input and output from different entities in the
protocol P , and ⊥ indicates a null argument. AccountTrade is
composed of Upload, Examine, and Download. Please refer
to Table I for notations.

Upload: This protocol is executed between a seller who
wishes to sell her dataset d and the broker. The seller generates
a post postt at time t which is posted at the public bulletin
board so that the broker can book-keep the transaction and

achieve individual accountability.

[Seller : d; Broker :⊥] →Upload [Seller :⊥; Broker : d,postt ]
Examine: The broker examines whether the dataset is

derived from existing ones with this protocol. He generates
a set of MinHash values mhπ (d) for the dataset d , and they
are used to calculate the uniqueness index of d , UD(d), over
the entire database D containing all already-uploaded datasets.

[Broker : d] →Examine [Broker : {mhπ(d)}π ,UD(d)]
Download: This protocol is executed between a buyer and

the broker. The buyer generates and posts postt at the bulletin
board similar to Upload protocol.

[Buyer :⊥; Broker : d] →Upload [Buyer : d; Broker : postt ]

E. Design Goal

� is defined as {r ⇒ dis(e)|r ∈ �} where � is a set of
runs which contain misbehavior. Our goal is to design the
protocols such that Upload, Examine, and Download have
both symbolic individual �-accountability and computational
individual �, η, χ-accountability w.r.t. the broker.

III. SPECIFICATIONS OF ACCOUNTTRADE

A. Building Blocks

1) Cryptographic Hash: Suppose 	 is a set of characters.
We employ a cryptographic hash function H : {0, 1}∗ → 	k

where k is a pre-defined system-wide parameter. The hash
function maps any bitstring to a string of length k.

2) Digital Signature: A secure digital signature scheme is
leveraged to let an entity E sign on a message m ∈ 	∗.
Produced signature is denoted by sigE (m), and it is used to
verify the integrity of m. We also let every signature secret key
be bound to a specific user so that the signature can be used
to prove E’s ownership for accountability purpose. For the
simplicity, we omit the signature verification in the protocol
specifications.

3) Append-Only Bulletin Board: A bulletin board with
‘append’ and ‘read’ privileges only [26] has been employed
as the source of trust in systems requiring accountabil-
ity or verifiability [6], [8]. It is a public broadcast channel
with memory where any party can post messages by appending
them to her own area, and she can see anyone’s posts as well.
A posted message is denoted as a ‘post’ hereafter.

With the building blocks, we present the architecture of
AccountTrade as in Fig. 2. Buyers/sellers post posts at the bul-
letin board whenever they buy/sell datasets, and brokers verify
the corresponding records exist before accepting/releasing
datasets. After accepting a dataset, the brokers examine it
before finally listing it for selling.

B. Upload for Sale

When a seller A wants to upload a dataset to sell it, she
follows the Upload protocol (Fig. 1) and posts her declaration
postt at the bulletin board at time t , where ‘‖’ denotes string
concatenation. Then, she sends the upload request along with
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Fig. 1. Upload protocol between a seller A with ID IDA and the broker for uploading dataset d.

Fig. 2. Architecture of AccountTrade.

H(d) to the broker. The broker finds the corresponding post
from the bulletin board and blames A if none is found, because
it is evident that she has tried to avoid being book-kept. If the
broker sees the post, he accepts A’s request and retrieves the
dataset. Then, the broker checks whether the hash of received
dataset is identical to the one posted at the bulletin board and
blames A if not. Finally, the broker generates and publishes
the description of the dataset d (e.g., its contents, price, H(d)).

C. Dataset Examination

If the upload is successful, the broker checks whether a
similar dataset has been uploaded before. To do so, we propose
uniqueness index, which is indicative of the amount of overlaps
between a given set S and a set of sets S = {S1, · · · , Sn}.

Definition 3 (Uniqueness Index): Given a set of S =
{S1, S2, · · · , Sn}, the uniqueness index of Sx over the set S is
defined as US(Sx ) = 1 − maxS∈S{
(S, Sx )}, where 
(S, Sx )
is a normalized similarity function describing how unique Sx

is when compared to S, defined as:


(S, Sx ) = J (S, Sx ) · max(|S|, |Sx |)
min(|S|, |Sx |)

J (S1, S2) denotes Jaccard Index, which is statistical mea-
surement of the similarity of two given sets, defined as
J (S1, S2) = |S1∩S2||S1∪S2| . Then, we define selling of a dataset

d as re-selling if UD(d) > θhigh and as valid selling if
UD(d) < θlow, where D is the database of datasets the broker
possesses, d is the dataset to be examined, and θhigh, θlow refer
to two threshold values for decision making. If the uniqueness
index is between the two threshold values, the broker can
manually inspect the dataset with human labor.

The reason we define and use this uniqueness index in
dataset re-selling detection is manifold. Firstly, it intuitively
measures how many elements of Sx are similar to the elements
in the entire set S, and the multiplier after the Jaccard

Fig. 3. Uniqueness index calculation performed by brokers.

Index guarantees the index is equal to 1 when Sx is a
subset/superset of any set in S. Secondly, in many existing
similarity comparison approaches in information retrieval,
the datasets are considered as sets of elements (k-grams
for texts, feature descriptors for images, and key frames
for videos), and therefore the proposed uniqueness index is
consistent with them (reviewed in § VII). Thirdly, there is
no known similarity comparison mechanism for table-type
datasets, and similarity comparison of JSON-like datasets are
hardly scalable. We were able to design a novel similarity
mechanism with high scalability based on this uniqueness
index. Fourthly, our extensive experiments on the real-world
datasets (§ V-B) show that the uniqueness index of dx is low
(≤ 0.2) when dx is derived by applying simple perturbation
to existing data, and that the index is as high as 0.8 ∼ 1.0
when dx is unique. This filters many illegal reselling requests
automatically with a high confidence when the threshold
values are selected conservatively. We will elaborate how to
choose the thresholds in § V-B. Finally, because uniqueness
indices are clearly separated, it becomes possible to rely on
threshold-based decisions which is efficient, and this enhances
the scalability.

Next, we describe how to calculate the aforementioned
uniqueness index. The flow is sketched in Fig. 3.

For a given dataset d , we first convert it to a membership
vector which uses a binary vector to represent d . Then,
we calculate the MinHash values of the membership vector,
which will be used to estimate the uniqueness index (Def. 3).

To have a better insight into why we represent datasets with
sets of elements, we briefly explain MinHash and its property.

1) MinHash: MinHash [11] is a special hash for quick
estimation of Jaccard Index of two sets. It is assumed that
the universe set of elements that may appear in sets is finite
and ordered, and a finite bit vector S is used to represent a set
S. That is, S[i ] = 1 if S has the i -th element in the universe
and 0 otherwise. Firstly, a permutation π over {1, 2, · · · , |S|}
is randomly selected, and the MinHash value of S for this π
(denoted as mhπ(S) hereafter) is the position of the first bit
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whose value is 1 when all bits in S are visited with the order
given by the permutation π . For example, suppose the size of
the universe set is 10 and we are given the membership vector
of a set S = {0, 1, 0, 0, 0, 0, 0, 1, 1, 1}. Then, mhπ(S) corre-
sponding to the permutation π = (5, 7, 3, 2, 9, 10, 1, 4, 8, 6)
is equal to 8: the permutation π suggests 1 in 7th bit, 2 in 4th
bit, 3 in 3rd bit, 4 in 8th bit, and so forth, and if one probes
the membership vector S by following this order, the 8th bit
is the first 1, therefore the MinHash value mhπ(S) is 8.

The following property from [12] explains why we pro-
pose to apply MinHashing: Pr[mhπ(S1) = mhπ(S2)] =
‖S1∧S2‖
‖S1∨S2‖ for any S1, S2. Then, if we pre-define M permu-

tations {π1, π2, · · · , πM } and achieve M pairs of MinHash
values from S1 and S2, i.e., {(mhπi (S1),mhπi (S2))|πi , i =
1, 2, · · · M}, we can use these pairs to approximate J ( d1, d2)
by calculating the proportion of equal pairs out of M
pairs. Such an approximation has a bounded expected error
O(1/

√
M) according to the Chernoff-Hoeffding bound.

In other words, if datasets can be converted to sets of
elements, and if enough permutations are defined to achieve
MinHash values, one can easily approximate the uniqueness
index of a dataset d against a database of datasets D by
comparing the MinHash values. Only the conversion from
datasets to sets of data elements has a complexity linear to
the size of datasets, and the subsequent procedures’ complex-
ities are linear to M . Therefore, if we pre-define and re-use
M permutations and store all calculated MinHash values,
the uniqueness calculation’s complexity does not depend on
the sizes of the datasets that are already in the database.

To do so, we need define ‘data elements’ for different
types of datasets. Any definition is accepted in Account-
Trade, and we employ existing definitions for texts and
images in Information Retrieval (IR) community as build-
ing blocks [10], [11], [32]. However, such definitions for
table/JSON/XML do not exist in the literature yet, because
retrieval of table/JSON/XML has not been studied much
– retrieval algorithms for those types do not have wide
applications in web unlike text retrieval or image retrieval.
For those types, we present our own definitions which lead
to novel similarity comparisons. Graphs are treated dif-
ferently because the comparison involves an NP-complete
problem.

2) Text: The text document is shingled to k-shingles (also
known as k-grams) [12]. A k-shingle is a contiguous sequence
of k characters including spaces (may or may not include
others) in a text. For example, a text string “bad boy” turns into
{“bad ”, “ad b”, “d bo”, “ boy”} when shingled to 4-shingles.
Then, a text dataset is treated as a set of k-grams, and its
bit vector can be created when k is fixed (a vector of 27k

dimensions). A good rule of thumb is that k = 5 ∼ 9 for
large documents similarity comparison [34]. To avoid being
biased by stop words, they are removed first, and to achieve
robustness against trivial perturbation, synonyms are replaced
with a pre-defined representative in the family of synonyms
(using the synsets in WordNet [39]). Finally, the MinHash
values can be extracted from the vectors.

3) Image: Feature descriptors (e.g., SIFT [50], [51]) are
useful in object recognition [31]. They are automatically

extracted from the images, which are high-dimensional vectors
describing points, edges, or regions in the images. Each image
may have hundreds of feature descriptors, and they may be
binary, i.e., {0, 1}dim , or real, i.e., [0, 1]dim . Since dim is
as large as 128, it is impossible to directly turn the list of
features to a membership vector in either case. We form a
finite feature universe by extracting features from a set of
images whose features are diversely distributed in the feature
space (e.g., Flickr1M set [5]), and the bit vector of an image
is generated by finding the nearest neighbors in the feature
universe.

4) Video: Keyframes extraction [30] summarizes a video
with several keyframes which are essentially images. Then,
the uniqueness of the keyframes can be evaluated as afore-
mentioned, and the uniqueness indices of keyframes can be
aggregated to evaluate the uniqueness index of the video
(e.g., the minimum index defined as the uniqueness index of
the video).

5) Table: Retrieval or similarity comparison on large-scale
table datasets have not been researched yet. We propose a
novel mechanism by leveraging the MinHash and the bloom
filter [9]. A bloom filter is a vector of m bits representing a set
of items. The filter has k uniformly distributed hash functions
which map an item to a position in the vector. When an item is
inserted to the set, k hash values (i.e., positions) are calculated,
and all corresponding bits are set to 1. Then, to query whether
an item ix exists in a set S = {i1, i2, · · · }, all ix ’s hashed
positions are probed to see if all bits are 1. If any of the bits
is 0, ix /∈ S with zero false negative ratio; if all of these bits
are 1, ix ∈ S with a bounded false positive ratio. It is known
that the false positive ratio is the lowest when k = m

n ln 2
when m, n are given, and the filter size with this optimal k is
m = − n ln p

(ln 2)2
≈ 9.58n for a given false positive ratio p = 0.01

and the number of items n to be inserted [20]. For the sake of
simplicity, we use Bk

m(d) to denote d’s bloom filter with size
m and k hash functions hereafter.

We treat each row as an element to be inserted, and we
construct a bloom filter for each table dataset d as Bk

m(d).
Then, due to the bloom filters’ properties, Bk

m(d1 ∪ d2) =
Bk

m(d1)∨ Bk
m(d2) and Bk

m(d1 ∩d2) = Bk
m(d1)∧ Bk

m(d2), where
the intersection and union are performed on the rows. Owing
to the fact that the approximate number of items that have been

inserted in Bk
m(d) is f (|Bk

m(d)|) = −m ln(1−|Bk
m(d)|/m)

k where
|Bk

m(d)| denotes the number of 1’s in Bk
m(d) [44], the Jaccard

Index of d1, d2 is approximated by

J (d1, d2) = |d1 ∩ d2|
|d1 ∪ d2| ≈ f (|Bk

m(d1) ∧ Bk
m(d2)|,m, k)

f (|Bk
m(d1) ∨ Bk

m(d2)|,m, k)

One drawback is that the above method only addresses
horizontal partitioning. Therefore, we insert all subsets of
every row so that the vertical partitioning is also covered
by the bloom filter. That is, for a table having c columns,
we insert 2c −1 sub-tuples for every row into the bloom filter.
Because of the performance concern in the relational database
management (e.g., owing to join operations and dynamic
rows), the number of columns is usually small (e.g., less
than 10). Therefore, AccountTrade can apply this approach for
the majority of the tables. If the table has excessive columns,



228 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 1, JANUARY 2019

we insert the tuples of size 1, 2, 3, · · · , g only instead of
inserting all sub-tuples. Then, the number of elements in the
bloom filter is reduced from O(2cr) to O(cgr) at the cost of
accuracy loss, where r is the number of rows in the table.
With this approximation, if every attribute in the table (both
row-wise and column-wise) is unique, the false positive ratio
of a row-query when c > g is 1 − (1 − p)�c/g� where p is the
false positive ratio of the bloom filter.

The second drawback is that, even though the bloom filter
is compressed from O(2cr) to O(cgr), the filter size m can be
very large since a large m will lead to a lower false positive
ratio (9.58 bits per item is required to achieve 1% false positive
rate). Then, overhead of the bit-wise OR and AND operations
incurred in the approximation of J (d1, d2) may be significant.
We cannot directly use MinHash to approximate the unique-
ness index because the Jaccard Index of two bloom filters does
not directly indicate the Jaccard Index of the original tables.
However, we can indirectly approximate the uniqueness index
in a constant time irrelevant to m with the following trick.

Recall that we can estimate |Bk
m(d1)∧Bk

m(d2)|
|Bk

m(d1)∨Bk
m(d2)| (denoted as J12)

with MinHash values of Bk
m(d1) and Bk

m(d2). Therefore,
if we can calculate |Bk

m(d1) ∧ Bk
m(d2)| or |Bk

m(d1) ∨ Bk
m(d2)|

from J12, we are able to estimate J (d1, d2) based on the
bloom filters. We derive them by using the inclusion-exclusion
principle:

|Bk
m(d1) ∨ Bk

m(d2)| = |Bk
m(d1)| + |Bk

m(d2)|
1 + J12

|Bk
m(d1) ∧ Bk

m(d2)| = J12 · |Bk
m(d1)| + |Bk

m(d2)|
1 + J12

To calculate them in a constant time, we augment the bloom
filter and use an extra field to store |Bk

m(d)| for each filter
so that this field can be accessed in a constant time. Then,
AccountTrade can approximately calculate the Jaccard Index
J (d1, d2) in a constant time irrelevant to the size of the filter.

6) Graph: If graphs are unlabeled, i.e., nodes and edges
do not have any attribute, the similarity comparison between
two graphs only compares the graph topology. The most
efficient similarity comparison for unlabled graphs is [43]
which generates 6 GBytes index and 33s index time for a
graph of 1 billion nodes. However, even in [43], the query
time is several seconds for a graph with only tens of nodes and
edges. This is due to the inherent hardness of the sub-graph
isomorphism problem which is NP-complete [17]. Therefore,
we only consider the labeled graphs where nodes or edges
have attributes, and focus on evaluating the attribute-wise
similarities/uniqueness. Graphs are stored as tables, therefore
we treat the graphs as tables and use the same method as
aforementioned.

7) JSON/XML: XML files can be easily converted to JSON
format and vice versa, therefore we only discuss how to handle
JSON files. They are essentially text files with a (key:value)
pair-like dictionary structure, but they cannot be treated as
texts or tables. Their structure is closer to trees. The top level
can be one or multiple (key:value) pairs which are root node(s)
of the trees, and a value in one (key:value) pair can be another
(key:value) pair nested in it, which is a child of the node.

In JSON-like datasets, the topology among the (key:value)
pairs (i.e., the tree structure) contains rich information, and the
similarity comparison needs to capture it. To do so, we treat
every subtree in the tree/forest as an element in a JSON file.
We apply a cryptographic hash in order to map every subtree
to a finite domain, which is considered as the domain for the
membership vector.

Although the domain is finite and discrete, it is impractical
to use the previous way to calculate the MinHash values. The
number of elements in JSON files is usually less than 106

while the size of the domain is as large as 2256 ≈ 1077.
This implies we must probe ≈ 1077 times on average in a
sparse membership vector. Instead, for every element in a
JSON file, we apply a hash function H which maps it to
a positive integer value. Then, from all the integers generated
from all the elements, we find the minimum integer and set
it as the MinHash value of the file, denoted as mh H (d).
Now, the MinHash is calculated based on H rather than a
permutation π . If the same hash function H is used to compute
such a MinHash values for two sets S1, S2, we still have
Pr[mh H (S1) = mh H (S2)] = ‖S1 ∧S2‖/‖S1 ∨ S2‖ for any two
sets S1, S2 [34], where mh H (S) refers to the MinHash value of
the set S calculated with the hash function H . The complexity
of this MinHash is linear w.r.t. the number of elements in the
JSON file. Then, instead of having M permutations, we can
have M different hash functions to generate M MinHash
values for JSON files.

Because every subtree is considered as an element, as long
as the attackers’ perturbation does not damage each element,
the uniqueness index will capture the similarity among JSON
files. Similar to the table, there are exponentially many sub-
trees in a tree, and we limited the depth of the subtrees
within a constant for getting a polynomial-time computation
complexity.

8) For All Types: After the uploaded dataset d’s uniqueness
index is calculated with a linear scan on D, the broker can
decide whether he will accept it (if the uniqueness index
UD(d) is very high), reject it (if UD(d) is very low), or leave it
to manual inspection (otherwise). How to set up the thresholds
will be explained in § V-B.

D. Download After Purchase

When a buyer B wishes to get access to certain dataset d
(after reading the description provided by the broker), she
pays for it to the broker first and then follows the Download
protocol (Fig. 4). She first posts a declaration postt at the
bulletin board at time t , and she initiates the download request
by sending H(d) to the broker, where H(d) is available in
the description of the dataset provided by the broker. The
broker finds the corresponding post from the bulletin board
and blames B if none is found, because it is evident that she
has tried to avoid being book-kept. If the broker sees the post,
he accepts B’s download request and sends the dataset to B .

E. Parallelization

The most intensive overhead comes from the 1) data file I/O;
2) conversion to membership vector; and 3) generating M
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Fig. 4. Download protocol between a buyer B with ID IDB and the broker for downloading dataset d.

MinHash values. Therefore, we consider reducing the overall
execution time by introducing parallelization. Data is logically
partitioned into chunks (except JSON/XML types) so that
each processor only reads the designated chunk. We carefully
design the partitioning among processors so that the mem-
bership vector will not be incomplete due to the partitioning.
Finally, we compute M MinHash values in parallel since each
value is independent of another. Note that processors can read
one file simultaneously in ‘Read Only’ mode and that both
Windows and Linux file systems support random access.

1) Text: We divide text documents into several chunks
such that two consecutive chunks have k overlapped letters.
Then, each processor individually and independently loads the
k-shingles into the shared membership vector simultaneously.

2) Image: We divide images into chunks of same res-
olution (each chunk is a cropped image) where adjacent
chunks share as many pixels as the range of the feature
descriptor, and each processor extracts features in each chunk.
Then, each processor finds the nearest neighbor in the visual
word space and fill it into the shared membership vector
simultaneously.

3) Video: In most works, the keyframes are extracted based
on the temporal differences in a time window of t frames,
therefore we divide videos into chunks where t frames are
overlapped between consecutive chunks. Then, the same pro-
cedure as in image-type data can be followed.

4) Table & Graph: We horizontally partition tables into
several chunks sub-tables. Each processor can independently
load each sub-tuple to the shared bloom filter simultaneously.

5) JSON/XML: JSON files are hard to divide because the
tree structure needs to be preserved. Therefore, we do not
parallelize the I/O, and we only parallelize the MinHash
calculation.

F. Accountability Properties of AccountTrade

Upload
1) J1: If the post postt matching H does not exist, the bro-

ker states dis(A) where A is the one who sent the upload
request.

2) J2: If the posted hash H in postt is different from the
calculated hash H ′, the broker states dis(A).

Examine
3) J3: If the calculated uniqueness index is very low or the

manual inspection indicates the dataset is derived from
already-uploaded ones, the broker states dis(A) where A is
the one who uploaded the dataset.

Download
4) J4: Same as J1 except that dis(B) is stated instead,

where B is the one who sent the request.
J1 detects a dishonest seller who tries to deny a sale

transaction, and J2 further prevents a dishonest seller from
declaring a wrong dataset. J3 detects reselling, and J4 detects
a dishonest buyer who tries to deny a purchase transaction.
Due to the aforementioned judge processes, sellers are not
able to avoid being taxed for their dataset sale, and buyers
cannot resell the purchased datasets or deny the purchase.
Therefore, AccountTrade successfully achieves the pre-defined
accountability.

IV. PROOF OF ACCOUNTABILITY

A. Automatic Proof for Symbolic Model

We formally verify the fairness and completeness in Upload
and Download protocol by using ProVerif [8], an automatic
symbolic protocol verifier. Proverif models a protocol by
a group of parallel processes. Each step in a process is a
statement of the form in(c,m) or out(c,m), meaning that a
message m is received from or sent to the channel c. After
modeling the processes, ProVerif automatically verifies the
soundness of the protocol by validating predicates that should
be satisfied (various accountability properties in our case).
We additionally model and enumerate all possible misbehav-
ior from seller A and buyer B , and we also modeled two
types of processes for each of two entities: honest/dishonest
sellers and honest/dishonest buyers. Honest processes strictly
follow the protocols and dishonest processes enumerate all
misbehavior. Then, we add events for the broker to blame
dishonest participants when it detects them. For the seller A,
the honest/dishonest process runs in parallel, and we add
an event event(NFol(A)) before the dishonest process exe-
cutes. Then, in the case the broker finds A has performed
misbehavior, the event event(JNFol(A)) is executed. Hence,
to ensure that the broker has made correct decisions, we vali-
date the predicate by using the automatic verification func-
tion in ProVerif: ∀x .event(JNFol(x)) ⇒ event(NFol(x)).
Specifically, the soundness in case J1, J2, J4 are verified by
using the predicate. The model of AccountTrade is available at
https://goo.gl/TNfF8n, and it passed the automatic verification
by ProVerif. This indicates AccountTrade’s design is flawless.

B. Theoretic Proof for Computational Model

Recall that a uniqueness index is approximated with M
MinHash values. Let κ be the security parameter, εconv be
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Fig. 5. Benchmark of Uniqueness Index calculation. (a) Text per words #. (b) Image per feat. #. (c) Video per frame #. (d) Table per row #. (e) Table per
column #. (f) JSON per element #.

the upper bound of the error introduced in dataset-to-set
conversion, and Pr[εconv] = 1 − δconv be the probability that
this worst case occurs. Then, we have Theorem 1.

Theorem 1: Given an accountability property �, the broker
in AccountTrade computationally and individually ensures(
�, δmh +δconv −δmhδconv,max( 1

2κ , δmh +δconv −δmhδconv)
)
-

accountability, where δmh = 2 exp(− M(θhigh−θlow−εconv)
2

2 ).
Proof: η in Fairness: In J1, it is impossible that an honest

entity will be blamed as the hash values are always calculated
correctly. Therefore, ηJ1 = Pr[dis(A) = F] = 0 in J1. Simi-
larly, ηJ2 = ηJ4 = 0. ηJ3 in J3 is related to the re-selling detec-
tion in Examine protocol. AccountTrade defines a dataset
d as valid if UD(d) > θhigh and illegal otherwise. Then,
an honest seller is blamed when the calculated uniqueness
index is below θlow but the true index should have been above
θhigh. Let ÛD(d) be the uniqueness index approximated by M
MinHash values and UD(d) be the true uniqueness index. The
Chernoff-Hoeffding bound tells Pr[|ÛD(d)−UD(d)| < εmh] >
1 − δmh , when M = 2

ε2
mh

ln 2
δmh

for any constant εmh, δmh .

Then, an honest seller is blamed when sum of two errors
exceed θhigh − θlow, i.e., εmh > θhigh − θlow − εconv, whose
probability is bounded by ηJ3 = 1 − (1 − δmh)(1 − δconv).
In order not to have false blaming, εmh should be no greater

than that, in which case δmh = 2 exp(− M(θhigh−θlow−εconv)
2

2 ).
In conclusion, η = max(ηJ1, · · · , ηJ4) = ηJ3.
χ in Completeness: In J1, if hash collision occurs for

d ′ �= d (i.e., H(d) = H(d ′)), a dishonest seller becomes able
to request uploading a new dataset d without being book-
kept. However, the probability of this is as small as 1

2κ

where κ is the security parameter, therefore χJ1 = 1
2κ where

χJ1 = Pr[¬(Broker ensures �)] for a run with dishonest seller
in J1. Similarly, χJ4 = χJ2 = 1

2κ . Similar analysis applied to
χJ3 shows that χJ3 = ηJ3 = δmh + δconv − δmhδconv. Hence,
χ = max( 1

2κ , δmh + δconv − δmhδconv).

V. VALIDATION ON PROTOTYPE TESTBED

We acquired texts, images, tables, graphs and JSON datasets
from publicly available sources. Text datasets are from [33]
and [37]; image datasets are from [5] and [47]; video
datasets are from [7] and [22]; table & graph datasets are
from [33] and [37]; and JSON datasets are from US Govern-
ment Open Data site [23]. Unlike other data types, we were not
able to acquire enough number of video or JSON files from
the publicly available datasets. The total volume is 2.2 TBytes,
and they are used in the following benchmark, simulation, and
the emulation.

A prototype system of AccountTrade is deployed in a
server with Intel(R) Xeon E5-2620 and 32GB DDR4 1866 for
emulation using the first four types, and the extension to
JSON-like datasets is deployed in another server with Intel(R)
Xeon E5-2680 and 256GB RAM 1

A. Microbenchmark With Real Data

Note that we implemented the parallel algorithms (§ III-E).
1) Extra Overhead of Upload and Download: The only

extra information AccountTrade requires brokers to store are
MinHash values. Per each published file, brokers only need to
store M MinHash values (1024 long integers in our simulation,
translating to 8 KB). Sizes of IDs, hash values, and the
signature in the post are fixed and negligible. Therefore,
the overall extra communication overhead among the con-
sumers, the bulletin board, and the broker is negligible.

2) Run Time of Examine: Examine consists mainly of
uniqueness index calculation, whose different benchmarking
results are shown in Fig. 5. Fig. 5(a)-(e) present the time con-
sumption in calculating 1024 MinHash values from different
types of data. All the run time presented in Fig. 5 include the
I/O overhead. The last step of uniqueness index calculation
is finding the maximum of 
(S, Sx ) (Def. 3) over the entire
database. This step is not type-dependent, and it is no more
than linear search across the database which incurs 2.5ms per
million datasets at the broker’s side.

It is noticeable that MinHashing time does not change much
when the size of the data increases in all types except Video
(whose MinHashing is not individually shown in the figure).
This is natural since MinHashing requires AccountTrade to
permute on the membership vector until it finds the first bit
that is 1, and in theory the run time of it should be inversely
proportional to the number of items in the membership vector,
which implies the MinHashing time is inversely proportional
to the data sizes as well. In Fig. 5(b), the time for feature
extraction depends on the image resolution and the contents
instead of the number of features, however the majority of total
time (for converting to membership vectors) grows linearly
w.r.t. the number of features since a nearest-neighbor search
is involved for each feature descriptor. The uniqueness index
calculation in the video type data (Fig. 5(c)) involves Min-
Hashing, but the number of times MinHashing is performed
is proportional to the number of frames, and this is why its
green bars grow with the frames. In our implementation, we set

1The lead author changed the institution recently, and he no longer had
access to the previous computing environment.
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Fig. 6. Uniqueness index distribution of perturbed existing data v.s. new data. (a) Text. (b) Image. (c) Video. (d) Table. (e) JSON.

the threshold for sub-tuple approximation in the table data as
7 columns, and this is why run time grows exponentially until
7 columns and then polynomially after it in Fig. 5(e). Unlike
other types, the time for MinHashing grows linearly w.r.t. the
data sizes in JSON (Fig. 5(f)) because we calculate MinHash
differently.

Examine is executed when sellers upload their dataset, and
it does not have to be performed in a real time since it is
acceptable that a hold is placed on an uploaded dataset when
it is uploaded for selling. Therefore, the presented benchmark
results are promising in that most of the data can be examined
in a time that is negligible to the uploading time.

B. Large-Scale Simulation With Real Data

We analyzed the distribution of uniqueness indices in
real-world datasets to explore whether the uniqueness index
space [0, 1] can be clearly divided into two areas: those for
legal sale and those for illegal re-sale. We created a database
of data files containing MinHash values of 5,000 data files for
each type except video and JSON types who contain MinHash
values of 500/375 files respectively. Then, we acquired a
ground truth datasets of unique data and derivative data as
follows. We considered datasets A and B are unique from each
other if they are from different sources, and we considered A
as derivative if it is achieved by applying these perturbations
on B:

• Text: Replace words with synonyms; switch
active/passive tenses of verbs; delete sentences; merge
documents.

• Image & video: Crop the image/video; rotate the
image/video; merge existing images/video.

• Table & graph: Delete rows; delete columns.
• JSON/XML: Remove nodes; disorder nodes; extract

nodes in trees/forests.
The consequent distributions are shown in Fig. 6.

Uniqueness indices of text datasets and video datasets
(Fig. 6(a), Fig. 6(c)) are lower than others for ‘unique test
data’ group in general. This is because, even after removing
the stop words, text documents may have certain small amount
of overlaps (i.e., words are not listed in stop words list but are
common) even if documents are from different datasets. On the
other hands, JSON datasets’ uniqueness indices (Fig. 6(e))
are close to 1 for ‘unique test data’ because SHA-256 is
applied to map each subtree to an element. The domain of
the digest is as large as 2256, and hash collision did not
occur in our experiment. The results of text types and table
types have several intervals (Fig. 6(a), Fig. 6(d)) because

uniqueness index of text data slightly depends on the contents
of datasets, and we chose test data from three datasets of
different categories for text and table. Some perturbed JSON
files’ uniqueness indices (Fig. 6(e)) are as high as 0.2 because
the hashed subtree changes if some of its children are removed,
but the similarity can still be captured from other common
parts.

It is clear that the uniqueness indices can be clustered into
two clusters with simple horizontal separators y = θlow and
y = θhigh where all unique data are above y = θhigh and
the rest is below y = θlow. Throughout the simulation and
emulation, we did not see any data that has low uniqueness
index while it is in the ground truth set of unique data and
vice versa. However, the actual values of the separators are
dataset-dependent, and AccountTrade needs to find θhigh, θlow
adaptively. We let AccountTrade first sets initial values for
the thresholds (e.g., θhigh = 0.8, θlow = 0.3), and updates the
thresholds when the index falls into [θlow, θhigh]. If the manual
inspection determines that it is derivative, θlow is set to be
that index value; if the manual inspection determines that it
is unique, θhigh is set to be that index value. In case even the
manual inspection does not know whether this file unique,
thresholds remain same. The distance between these two
separators will strictly decrease every time gray-area datasets
are determined as derivative or unique. Although we were not
able to observe the dataset which makes two separators meet
in the middle, we cannot conclude the distance will be large
for all text, image, video, table datasets since the variety of our
datasets is limited. However, we conjecture that the distance
of two separators will converge with a high probability for a
given dataset that has similar characteristics. Then, brokers can
adaptively explore and use different separators for different
types of datasets (e.g., different thresholds for novels with
different genres).

C. QoS From Emulation

We used our 10 COTS computers to concurrently gener-
ate data publication requests to AccountTrade deployed at
our server computer. Our deployed program of Account-
Trade responds to concurrent requests with multiple threads,
and each request is processed with parallel algorithms. For
each type, we measured the extra latencies caused by con-
current requests, which is indicative of QoS at the users’
side. The results are presented in Fig. 7, which present
the minimum, average, and maximum extra latencies for
each type. We plotted the results until all concurrent results are
answered and terminated without exceptions. The server starts
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Fig. 7. Emulated increased latency per requests/s. (a) Text. (b) Image. (c) Video. (d) Table. (e) JSON.

to reject table-type requests at 8 requests (Fig. 7(d)) because
of the large memory consumption (bloom filter’s memory
size is 2GB in our implementation). Texts’ and images’
requests (Fig. 7(a), Fig. 7(b)) are concurrently handled without
noticeable QoS degradation for a while, and the degradation
becomes prominent when the memory consumption rose up
to 32GB and garbage collection occurs frequently. The video
types’ extra latencies are different from the previous two
(Fig. 7(c)) because the video loading is expensive, and the
degradation is caused by the concurrent reading at the disk.
Because the examination of JSON takes more time than
other types(Fig. 7(e)), it was not practical to increase the
concurrency until we observe the bottleneck (which would take
up to 10-15 days for one-time emulation if we had). However,
we can still conjecture from the figure that there would be a
bottleneck at around 300-400 requests/s. Note that this QoS
is bounded to our hardware environment only. It will be
improved if our server is equipped with more memory or more
cores.

VI. LIMITATIONS AND DISCUSSION

A. Threshold-Based Decision

The detection mechanism involves copy-detection in var-
ious types of datasets, and we use the uniqueness index
along with a threshold-based detection. We adopt the current
threshold-based decision process because (1) it is extremely
fast to make decisions with it, which makes it suitable for
large-scale platforms where more than billions of datasets
may reside; and (2) our extensive simulation with real-world
datasets show that the uniqueness indices are clearly separable
into two groups: unique and derivative datasets. In theory,
it is possible to project datasets to another complex feature
space so that more sophisticated perturbation can be cap-
tured (e.g., using recent advancement such as deep neural
networks), but a separate line of study needs to be performed to
increase the efficiency, and the “copy” needs to be re-defined
accordingly.

B. Plagiarism Detection

Determining whether a dataset is original or not is not
within the scope of this paper as discussed in the intro-
duction. Therefore, AccountTrade cannot detect idea-wise
plagiarism.

VII. RELATED WORKS

This paper and its conference version [29] are the first
to study consumer accountability in data trading. We first

review recent works in data trading, accountability systems,
and copy-detection Then, we compare this paper with our own
conference version.

A. Data Trading

Data trading has become a popular research topic in recent
years. Cao et al. [13] designed a data trading platform uti-
lizing the iterative auction mechanism to achieve maximum
efficiency to offset the self-interest behaviors amongst the
players (data collectors, users and owners). The platform was
created for multiple players who may compete with each other.
Delgado-Segura et al. [18] proposed an innovative protocol
that ensures fairness between data buyers and sellers so that
neither party is required to trust the other during the whole
transaction, as fairness is enforced by the said protocol based
on the Bitcoin language. The outcome of the fair protocol is
that payment and goods (data) delivery occur at the same time
during each transaction.

B. Accountability Systems

Accountability system has been studied in many other
areas. Logging mechanisms are used to achieve account-
ability in Wireless Sensor Networks [48]; trusted IP man-
ager is employed for accountability in internet protocol [40];
byzantine fault detection [25] is studied to account for faults
in distributed systems; memory attestation protocol is pro-
posed to achieve accountability against energy theft attack-
ers in smart grids [42]; and finally, accountability in virtual
machines [24] is studied to secure the cloud environment.

C. Copy Detection

Besides the fast variants we presented in § III-C, alternatives
exist except table/graph datasets.

1) Text: Shingling along with MinHashing has long been
used in the text copy detection [11] to discover similar text
documents. W-shingling [12], shingling by words instead of
letters, is also proposed to capture the word-based similarity.
Charikar proposed SimHash in [14] in order to detect
near-duplicate text documents, and they also convert docu-
ments to high-dimensional vectors and small-size hash values.

2) Image: Chum et al. [15] introduce two approaches to
perform copy detection: Locality Sensitive Hash on color
histograms and MinHash on feature descriptors. In both
approaches, the image is treated as a set of elements.
In [32], feature descriptors are extracted from each image, and
MinHash is applied to them, after which the Jaccard Index is
approximated by the MinHash values.
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3) Video: Video copy-detection is deeply related to that of
image datasets. The major approach is to select keyframes and
compare the similarities of the keyframes [19], [38].

4) JSON/XML: XML similarity comparison has been sur-
veyed in [45]. It includes a dynamic programming method
based on tree edit distance [36] and a information retrieval
method for document-centric XMLs [45]. For JSON types,
a FOSS JavaScript library [41] enables calculation of similar-
ities using a point-based mechanism. However, none of them
is practical in our scenario where a broker needs to handle
billions of datasets.

D. AccountTrade [29]

In [29], four types of common datasets (text, image, video,
table) in dataset trading were discussed. XML/JSON-like
datasets with (key:value) structurers were another common
type which was not handled in the conference version. Because
(key:value) pairs in XML or JSON datasets present a structure
similar to a tree or a forest, the data examination mechanism
needs to capture the similarity of the structure rather than the
string values. In this paper, we present a similarity compari-
son mechanism for JSON datasets which is scalable enough
for handling millions of datasets. The mechanism still uses
the uniqueness index in the conference version. Therefore,
AccountTrade in the extended version is a coherent framework
which can handle the trading of text, image, video, table, and
XML/JSON datasets.

VIII. CONCLUSION

This paper presents AccountTrade which guarantees correct
book-keeping and achieves accountability in the big data trad-
ing among dishonest consumers. AccountTrade blames dis-
honest consumers if they deviate from their responsibilities in
data transactions. To achieve accountability against dishonest
sellers who may resell others’ datasets, we presented a novel
rigorous quantification of the dataset uniqueness – uniqueness
index – which is efficiently computable. We formally defined
two accountability models and proved them with ProVerif and
theoretic analysis, and we also evaluated the performance and
QoS using real-world datasets in our implemented testbed.
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