
Crowdlearning: Crowded Deep Learning with Data Privacy

Linlin Chen∗, Taeho Jung†, Haohua Du∗, Jianwei Qian∗, Jiahui Hou∗, Xiang-Yang Li‡
∗Illinois Institute of Technology, †University of Notre Dame, ‡University of Science and Technology of China

{lchen96, hdu4, jqian15, jhou11}@hawk.iit.edu, tjung@nd.edu, xiangyangli@ustc.edu.cn

Abstract— Deep Learning has shown promising performance
in a variety of pattern recognition tasks owning to large quantities
of training data and complex structures of neural networks.
However conventional deep neural network (DNN) training in-
volves centrally collecting and storing the training data, and then
centrally training the neural network, which raises much privacy
concerns for the data producers. In this paper, we study how to
enable deep learning without disclosing individual data to the
DNN trainer. We analyze the risks in conventional deep learning
training, then propose a novel idea – Crowdlearning, which
decentralizes the heavy-load training procedure and deploys the
training into a crowd of computation-restricted mobile devices
who generate the training data. Finally, we propose SliceNet,
which ensures mobile devices can afford the computation cost
and simultaneously minimize the total communication cost. The
combination of Crowdlearning and SliceNet ensures the sensitive
data generated by mobile devices never leave the devices, and the
training procedure will hardly disclose any inferable contents. We
numerically simulate our prototype of SliceNet which crowdlearns
an accurate DNN for image classification, and demonstrate the
high performance, acceptable calculation and communication
cost, satisfiable privacy protection, and preferable convergence
rate, on the benchmark DNN structure and dataset.

I. INTRODUCTION

Deep learning [1] outperforms other machine learning
techniques in dramatically improving state-of-art in speech
recognition [2], object detection [3] , face recognition [4] and
genomics [5]. It specializes in capturing nonlinear features
from complex data and stays resistant to the interference of
irrelevant noise. The promising performance requires large
quantity of training data and more complex neural network
structure, which usually requires a server with powerful com-
putation capability to train for days. Additionally, in order
for a deep neural network (DNN) to perform well, it requires
training dataset’ distribution resembles that of the test dataset,
and the best way so far to achieve such training dataset is
to collect and analyze the user-generated data. Therefore, the
current practice among service providers is to collect the user-
generated data and provide relevant services for free in return.

However, conventional deep learning is performed in a cen-
tralized way where a server possesses and uses all the training
data collected from the individuals. This raises serious privacy
issues because user-generated data in its original form contains
various sensitive information describing individuals [6] [7] [8].
Besides, the central server holds the ultimate decision on the

Xiang-Yang Li is the contact author. The work is partially supported by
China National Funds for Distinguished Young Scientists with No. 61625205,
Key Research Program of Frontier Sciences, CAS, No. QYZDY-SSW-JSC002,
NSFC with No. 61520106007 and No. 61572347, NSF CNS 1526638, NSF
CNS 1343355.

training purpose in conventional deep learning, and therefore
the server may privately train and learn more information than
necessary. For example, image datasets provided for the face
recognition may be additionally fed to a DNN which trains and
learns location information based on the image background at
the server’s side. Such misbehavior is unobservable because
the server holds ultimate control on what will be the input/label
pairs used in training.

In the past decades, the number of mobile devices has
exploded and device owners create massive data on daily
basis. Such abundant user-generated data has given birth to
the application of various predictive models based on machine
learning techniques, i.e., users’ daily keyboard input is useful
to build personal associational input predictive model; users’
taken pictures are useful for face recognition and local gallery
profiling. However these data are too sensitive to get exposed ,
in which case will heavily breach the data producer’s privacy.

Inspired by the idea of crowdsourcing [9] and crowdsensing
[10], we present a novel approach to bypass the data collection
from mobile devices and directly train the DNN models with
mobile devices’ joint computation in a decentralized way. We
propose Crowdlearning which decentralizes the heavy-load
training procedure and completes it with the collaboration
among computation-restricted mobile devices who generate
and possess the training data. With Crowdlearning, data are
kept locally and individually in each mobile device, and
mobile devices cooperate with each other to share the interme-
diate results of training procedures. The service provider only
needs to collect tiny pieces of knowledge from the mobile
devices to build up its global model without having access to
any individual’s data.

Enabling Crowdlearning with mobile devices brings many
extra challenges. Firstly, training a DNN usually involves
complex optimization, and neural network with complex struc-
ture and massive training data usually results in training for
hours or days even for powerful servers, and it is much harder
to use mobile devices in the training. Secondly, the large size
of the DNN (can be as large as several GBytes) makes it
challenging for mobile devices to store the architecture and
manage the training as well. Thirdly, data traffic is expensive
especially for mobile devices, therefore our design is limited
by the communication overhead as well. Finally, connections
among mobile devices are unstable, and disconnection of
mobile devices may halt the training process or even negatively
impact the learning accuracy. Crowdlearning needs to be
robust against device disconnection.

Those challenges are addressed by our novel training archi-

tecture –SliceNet– which realizes the mobile-crowded privacy-
preserving DNN training. Our consequent contributions are:

1) We propose a novel idea —Crowdlearning and an imple-
mentable model —SliceNet which is feasibly deployed in
the resource-constrained mobile devices to facilitate the
computationally intensive DNN training.

2) Crowdlearning alleviates privacy concerns by keeping
all individuals’ data in their own devices, and SliceNet
further addresses it by ensuring that the joint computation
among devices will not disclose any inferable contents.

3) SliceNet enables data owners to hold ultimate control
on the training purpose and can privately keep the cus-
tomized training model for offline usage.

4) SliceNet tolerates bad network environment and achieves
a relatively high performance neural network model.

II. BACKGROUNDS AND PRELIMINARIES

A. Deep Neural Network

Different types of Deep Neural Network (DNN) exist, and
this paper focuses on the DNN for the classification. A DNN
has three types of layers. 1) input layer captures the input
features of the original data, such as pixels of images or gene
sequences, which will be delivered to the next layer – hidden
layer. 2) hidden layer is composed of several neurons, and
typically more than three hidden layers exist in each DNN.
Neurons (which are nodes in hidden layers) receive inputs
from the previous layer and deliver the activation function’s
output to the next layer. The first hidden layer receives the
input from the input layer, and the last hidden layer delivers
the output to the last layer of the neural network – output layer.
Edges only exist between two adjacent layers, and weights are
associated with all edges. For any neuron in any layer (except
the input layer) having the incoming edges with the weights
{wi : i = 1, 2, · · · , k} from the previous layer with k neurons
, its output is f

(∑k
i=1 hiwi

)
where {hi : i = 1, 2, · · · , k}

is the outputs of k neurons in the previous layer and f is the
activation function. 3) output layer unites the abstract features
of the last latent layer and outputs a probability vector in
which each element stands for the probability of the training
data belonging to the corresponding class. The architecture of
Convolutional Neural Networks (CNNs) slightly differ from
DNNs’ in that CNN replaces the fully connected layers with
convolutional and pooling layers and applies weight sharing
to further reduce the neural network’s parameter size. Without
specification, abbreviation DNN will include CNN henceforth.

B. Training DNN

Training of DNN involves nonlinear optimization. For su-
pervised learning, certain distance of the true expected value
and the predicted value, often called as loss function, is the ob-
jective function to minimize, and the most common approach
is to use the gradient descent to update the weights iteratively.
In short, gradient descent starts with random weights and
updates them based on the gradient of the loss function such
that the loss function keeps decreasing during the iteration
until converging to a local minimum.

More specifically, the training can be divided into two
steps—feed-forward and back-propagation. Feed-forward cal-
culates the outputs of all neurons layer by layer (from the input
layer to the output layer), where the input is denoted as x and
the final output of the output layer is denoted as ỹ. Then,
the error E (i.e., the difference between ỹ and the vector of
true labels y) is calculated, which is back-propagated through
the network and calculates the gradients of all weights layer
by layer (from the output layer to the input layer). During
the back-propagation every weight is updated based on the
calculated gradients.

Mini-batch Gradient Descent [11] is used to calculate the
gradients in this paper. The training dataset {X,Y} with m
samples is divided into ⌈m

b ⌉ mini-batches Ω = {ωk : k =
1, 2, · · · , ⌈m

b ⌉}, each containing b samples. Let ℓ be the loss
function. Then, the b samples in a mini-batch ωk will produce
b loss values {ℓki : i = 1, 2 · · · , b}, and every weight w in the
neural network is updated as follows:

w := w − α · 1
b

b∑
i=1

∂ℓi
∂w

where α is the learning rate. One full iteration of feed-forward
and back-propagation on all input data is denoted as an epoch.

We denote z(i−1), a(i), W(i) as the i-th layer’s input and
output vector, and weight matrix between i-th and (i + 1)-
th layer, respectively. In feed-forward stage, the i-th layer
receives the outputs of (i− 1)-th layer as its inputs, and then
forward its outputs to (i+1)-th layer, in which case we have
z(i−1) = W(i−1) · a(i−1) and a(i) = f(z(i−1)), where f(·)
is the activation function. In back-propagation stage, the i-th
layer receives the error back-propagated from (i+1)-th layer,
calculates the gradients to update weights, and propagates its
own error to (i − 1)-th layer. The gradient of W(i) can be
calculated as:

∇W(i)ℓ =
∂ℓ

∂W(i)
=

∂ℓ

∂z(i)
∂z(i)

∂W(i)
= δ(i)a(i)

where δ(i) can be viewed as the error back-propagated from
(i+1)-th layer and δ(i) = δ(i+1) ·W(i+1) ·f ′(z(i)). Apparently,
in both feed-forward and back-propagation stage, i-th layer
only need information exchange with its two adjacent layers —
(i−1)-th and (i+1)-th layer. This is the theoretical foundation
for our work.

III. CROWDLEARNING VIA SLICENET

A. Crowdlearning

We use Crowdlearning to denote crowded deep learning
where the dataset for training is directly crowdsourced from
the mobile devices who generate it. Crowdlearning differs
from distributed deep learning in several aspects. In distributed
deep learning [12], several servers with wired connection have
shared access to the collected dataset for training, and the
training procedure is performed in a distributed manner among
these servers. In Crowdlearning, the global dataset for DNN
training is composed of each individual generated data and

resides in every mobile device, and will never leaves the
mobile devices since generated. Training for the global DNN
is performed individually with a coordinator’s orchestration.
Another difference lies in that distributed deep learning trains
model in powerful servers, while Crowdlearning trains model
in resource-restricted mobile devices. One of the most promi-
nent advantage of Crowdlearning is that the individual data
remains in individual devices, therefor privacy implications
are alleviated, but not throughly addressed. We will carefully
address the concerns completely with SliceNet later.

B. SliceNet

We take a step forward from the concept of Crowdlearning
and propose a novel pipelined DNN training model – SliceNet.
SliceNet decomposes DNN into several simpler and smaller
components that are computationally manageable by resource-
constrained mobile devices. Specifically, input/output layer
stays integrated and assigns to mobile devices (dominator)
who contribute local data as training samples, and the hidden
layers are decomposed and distributed to other mobile devices
(followers) who contribute to computation for load sharing.
In case of other devices’ unexpected disconnection, we re-
serve several backup devices (dummy) for displacement. The
orchestration of the training is done by a parameter server.
The parameter server maintains the global DNN by receiving
updates from mobile devices to update global weights. There-
fore, the parameter server does not undertake any computation
tasks. However, all communication among mobile devices
will be relayed by this server since there is not likely to
be direct communication channels among mobile devices.
That being said, the role of parameter server can be played
by anyone who has enough bandwidth capacity. Since the
parameter server cannot know the contents of the relayed
communication, we assume public/private key pairs have been
distributed among the mobile devices to encrypt/decrypt the
relayed communication for the sake of privacy. Figure 1 gives
a straightforward illustration about SliceNet’s architecture.

C. Assumptions and Adversary Model

When the training updates the weights of DNN based on
a dominator’s training data, the dominator is the only party
who has privacy concerns at that time, since, in this particular
phase, others’ data is not involved at all and they only under-
take the computation task. Therefore, throughout the training
via SliceNet, we could assume the dominator is honest; but
this dominator could also be the adversary when he switches
role from dominator to follower in other phases. So we have
to say dominator is semi-honest. He has no intention to violate
privacy when he contributes his data as training samples, but
may try to invade others’ privacy after role exchange using
historical records as background knowledge. The rest parties:
other devices and the parameter server, are assumed to be non-
cooperative semi-honest adversaries. That is, we assume there
is no collusion attack, and we also assume the devices and the
server will follow the protocol specification but will try to infer
other parties’ private information throughout the protocol.

Fig. 1. Example of SliceNet. Parameter server slices the network into four
pieces (the upper graph) and assigns the pieces to mobile devices in each group
(the lower graph). Blue devices (dominator), at this configuration, provide
training data for training, thus possess the (input, output) layer, and red devices
(followers) participates in the joint computation, thus possess the sliced hidden
layer (the id Ni implies each mobile device’s responsible slicing piece). Blank
devices (dummies) are backup for blue/red devices’ disconnection.

IV. DESIGNING SLICENET

A. Overview

The incentive of SliceNet is to enable mobile devices to be
affordable for complex DNN training, as well as to solve pri-
vacy concerns existed in conventional DNN training scenario.
Considering one mobile device cannot tolerate the whole DNN
training computation cost, can we reduce each device’s load,
and combine multiple devices together to train one model? So
in the first stage, the parameter server slices the DNN into n
pieces based on the estimation of overall computation cost and
each mobile device’s preferable computation capability (IV-B.
Neural Network Slicing). We already give the analysis for the
foundation that slicing DNN into pieces can still ensure the
correctness and feasibility of training (II-B. Training DNN).
However if there are many more devices than the number
of sliced pieces, several devices will possess the same piece,
which if not being appropriately dealt with could cause severe
chaos. So in the second stage, the server logically divides the
devices into several groups (IV-C. Mobile Device Grouping),
where each group contains one dominator who indirectly
provides personal data for training and several followers who
perform hidden layer’s computation for load sharing purpose.
Subsequently, the training of DNN is performed independently
within each group in a distributed manner, and the training
knowledge (subset of the calculated weights) is also shared
among the groups (IV-D. Grouped Training) to obtain a more
generalized model. All groups’ shared knowledge is relayed by
the parameter server who aggregated and stores the collected
knowledge to update the weights of the centralized DNN.
(IV-E. Global Updating). After training, each mobile device
can choose to privately keep their group’s training model for
usage without explicitly exposing inputs and outputs to the
service provider.

B. Neural Network Slicing

For a neural network N , we slice it into a set of pieces
S = {N1,N2, ...,Nn}. Each Ni is an induced subgraph of
N , and N =

∪n
i=1 Ni. We assume n is known in advance

and could be estimated according to DNN’s overall load
and device’s acceptable load. Note that input and output
layers will stay integrated and be assigned to one device for
the correctness of the training, therefore we only consider
the slicing among hidden layers (N denotes neural network
removing input/output layers hereafter). Edges interconnecting
the pieces are denoted as cut edges hereafter. Specifically,
for cut edges, we let mobile users possessing the previous
layer’s neurons maintain and update the weights. We make
such assignment because, for any previous/next layers, the
output of the previous layer is the multiplication of a neuron’s
output and the weight, and letting the next layer’s possessor
know the weight will enable him to infer the output of the
previous layer’s neuron. Especially at the first layer this will
directly disclose all the input data.

The incentive of slicing is to enable mobile devices to
handle the computation cost of the pieces they are assigned. In-
tuitively, slicing the network into more smaller pieces will help
decrease the computation cost for one mobile device, however
too many small pieces will result in enormous communication
cost, for that slicing the DNN will cut off many connected
edges and isolate some adjacent layers, which will brings the
communications between two mobile devices if their pieces
are connected in the original DNN. With more pieces, there
will be more edges cut off, and more communication overhead.
On the other hand, the computation cost associated with each
neuron depends on the activation functions as well as the edges
incident to it, therefore not all neurons have the identical cost.
We need to carefully design the slicing algorithm to balance
the computation load assigned to every mobile devices, as well
as to minimize the overall communication cost.
Cost Graph: We first build the cost graph according to the
structure of DNN. The cost graph is used to balance the
computation cost and minimize the overall communication
cost. For a sliced piece, the main computation cost comes
from two aspects: 1) Summation of each neuron’s weighted
inputs, in feed-forward. 2) Calculating the gradient of the
loss function with respect to the connected edges’ weights, in
back-propagation. The main communication cost comes from
one aspect: the transmission of the neurons’ outputs (possessed
by other devices) from the previous layer to the next layer
through cut edges. Based on these observations, we can build
the cost graph, where the vertex weight is assigned with each
neuron’s computation cost, and edge weight is assigned with
communication cost. To formally model and solve the slicing
problem, we first define the cost graph of a DNN N .

Definition 1 (Cost graph): We define the cost graph Gcost =
{N,E,WN ,WE} for a DNN N where N is the set of
neurons, E is the set of edges, WN is the set of computation
costs associated with each neuron, and WE is the set of
communication costs associated with each edge.

wnij
∈ WN is the computation cost required for neuron nij (j-

th neuron in i-th hidden layer), which includes the computation
of activation function, summation, and derivative calculation.
w

e
hihi+1
jk

is the communication cost for transmitting output

from nij to n(i+1)k where e
hihi+1

jk denotes the edge connecting
neuron nij and n(i+1)k. Neuron nij’s weight wnij can be
calculated by wnij

= (∇ 7→nij
+ ∇nij 7→) · σf , where ∇ 7→nij

is the number of edges incoming to neuron nij , ∇nij 7→ is
the number of edges outgoing from neuron nij and σf is the
approximation of activation function’s cost. Edge ejk’s weight
wejk can be calculated by weijk

= c, where c is just a constant
and can be simplified as 1 as edges’ weights has no interactions
with vertices’ weights.
DNN Slicing As discussed, the objective of slicing is to mini-
mize the overall communication cost (for the parameter server)
with the constraint that each device’s acceptable computation
should be balanced (for the mobile devices). We formally
define the DNN slicing problem:

Problem 1 (DNN slicing problem): Given a DNN N and
the corresponding cost graph Gcost = {N,E,WN ,WE}, the
NN slicing problem is to partition the graph G into S = N1∪
N2∪ ...∪Nn, with cutting edges Ecut

ij connecting Ni and Nj ,
such that:

min
∑

e∈Ecut
ij ,1≤i<j≤n

we

s.t. ∀Ni, Nj ∈ S :

∣∣∣∣∣∣
∑

∀n∈Ni

wn −
∑

∀n∈Nj

wn

∣∣∣∣∣∣ ≤ η,

(1)

where η is the soft constraint over computation cost difference
between any two mobile devices. Ideally, it could be 0.
This is a traditional weighted graph partition problem, which is
widely used in parallel computation system design and sparse
matrix multiplication.

We use an open tool METIS [13] to help implement the neu-
ral network slicing. In our setting, since we know transmitted
weighted values will be summed as the next layer’s inputs, we
can actually reduce the communication cost by transmitting the
sum instead of each value, from previous layer’s possessor to
next layer’s possessor. This is an improvement in our problem
settings to reduce the overall communication cost, and we
adjust the costs in the cost graph accordingly. We can further
leverage quantization and vectorization techniques to reduce
the communication cost here.

C. Mobile Device Grouping

Assume there are many more devices (m) than the number
of sliced pieces n (m ≫ n), in which case many devices
will be assigned the same piece. Because one iteration can
only support one dominator’s one batch of training samples,
meaningless waiting or computation redundancy may occur.
Computation and scheduling will become more complex as
well. So we logically divide m devices into several groups,
such that each group has one dominator, n followers and h
dummies. The grouping strategy could be based on the geo-

graphical distance, social network, users’ habits, etc.. W.l.o.g.,
we assume grouping is random and the influence of the way
devices are grouped is ignored in this paper.

D. Grouped Training

Obviously one group can train a standalone DNN model
independently, but the distribution of one group’s training data
could differ greatly from the whole data’s distribution. Other
groups’ training will not benefit from this group’s data as
well. So we propose two stages for grouped training: intra-
group training, where devices in one group cooperate to train
one DNN model with this group’s training data, and inter-
group training, where groups exchange very minor knowledge
to improve each group’s model generalization ability. One
problem is that in one group only one dominator exists, who
contributes his/her data as training samples. To make the
most of all users’ data, shuffling withing the group is further
proposed to shuffle dominator, followers and dummies so that
every device’s data get a chance to be used as training samples.
Intra-group training: During the feed-forward, dominator
calculates the weighted sums which are the inputs to the
next layer, and these sums are delivered to the corresponding
followers in the next layer. followers compute and deliver each
weighted value to the next layer as well, which is iterated until
the feed-forwarding reaches the output layer. All the delivery
is relayed by the parameter server, for privacy concerns the
contents are all encrypted therefore invisible to the server.
We use asymmetric encryption that each mobile device gen-
erates a public/private key pair and then server distributes the
public keys accordingly. Similar calculation and delivery are
performed during the back-propagation as well. Notably, we
pipeline the feed-forwarding and back-propagation to reduce
the overall delay. The easiest way is setting up a timer to
coordinate the parallel pipeline scheduling.
Shuffling within the group: After a pass (feed-forward and
back-propagation) is finished for every input data possessed
by dominator, devices in each group needs to be shuffled,
so that another one could be dominator to contribute his data
for training. Because the contents transmitted between devices
are encrypted and invisible to the server, server can know each
neural network piece’s possessor without privacy compromise.
So shuffling is implemented by the server, in the way that
server first randomly chooses one mobile device as dominator
without replacement, and then randomly assigns the slicing
pieces to the rest devices as followers. Devices without as-
signment automatically become dummy. Each piece’s weights
should keep unchanged before and after shuffling and their
delivery is relayed by the parameter server as well in the
encrypted format after shuffling.

Therefore, there will be exactly n − 1 shuffling after the
initial grouping since there are n devices in each group and
every device will take charge of the input/output layers exactly
once. When all devices’ input data has experienced exactly
one pass after n − 1 shuffling, an epoch is finished, and all
the groups move to the next phase.

Algorithm 1: Group i’s training in SliceNet
1 Each mobile user j downloads responsible piece Nj and the initial parameters

wj from parameter server;
2 for e = 1 to #epoch do
3 Initialize all edges’ cumulative gradient accw∆G

to 0;
4 for b=1 to #batch do
5 Mobile devices within group i cooperate to calculate each edge l’s

gradient ∆Gl: ∆Gl = 1
batchsize

∑batchsize
k ∆G

(k)
l ;

6 forall edge el ∈ E do
7 wl = wl − α ∗ ∆Gl ;
8 acc

wl
∆G

+ = |∆Gl|;
9 end

10 end
11 Sort edges with acc

wl
∆G

in descending order;

12 Select the top θ proportion edges’ weights to upload to the server;
13 Download weights from server to replace group’s local weights;
14 end

Inter-group knowledge sharing: We notice that SGD method
always tries to find a direction towards the local minimum and
then subtracts the product of learning rate and the calculated
gradient from each weight. The closer to the local minimum,
the smaller the absolute value of the gradient is. So we say
for one edge e and its gradient ∂Ge, a large value of |∂Ge|
indicates the edge e is more significant in finding the local
minimum. Based on this observation and the idea of dropout,
when a group finished an epoch, the devices select θ portion of
edges’ weights with largest gradients and upload the plaintext
of them to the server. After then, the devices also request other
groups’ knowledge from the server (explained in next section).

We give an illustration of the logical pseudocode for group i
in algorithm 1. Shuffling stage is omitted for logical integrity.
The physical executions are implemented by devices in each
group with aforementioned mini-batch SGD. Ending of each
epoch, each mobile device checks the individually recorded
responsible parameters’ gradients and selects θ portion of
responsible weights with largest gradient variance to upload
to the server. Then each device retrieves some weights from
the server to replace each local parameters.

Note that this is the only phase where the plaintext of
trained weights are uploaded to the parameter server, which
differentiates our work from [14] who releases the gradients to
the server. We take the same strategy in [15] that weights are
directly shared instead of the gradients. We believe directly
releasing the gradients is much more dangerous, because
solving the training data from equations parameterized by
weights is much harder than solving equations parameterized
by gradients. In addition, new weights are comprised of old
weights, exchanged knowledge and accumulated gradients, so
inferring training data from weights introduces more uncer-
tainty than from gradients. Also uploading and downloading
weights at the end of each epoch will further increase the
difficulty for server to infer the relationship between gradients
and input data. SliceNet does not require differential privacy
considering the tradeoff between utility and privacy. We will
show that SliceNet already achieves strong privacy protections
even without differential privacy in the later section.

E. Global Updating

Parameter server maintains a global DNN model and up-
dates its local parameters based on the received weights. For
a specific edge in N , multiple groups will submit multiple
weights as their updates during the inter-group knowledge
sharing, then the parameter server sets certain sliding window
to calculate the average of the submitted updates within the
sliding window, which is stored as the global parameter of
the final DNN to be learned. To reduce the update frequency,
we adopt the lazy updating method, which means the server
will update its local parameters only when some mobile
device sends the download request in inter-group knowledge
sharing. When there is a download request for the weights,
the parameter server will select the edges with uploading
frequency (number of uploads) in sliding window’s records
larger than ω ∗ τ and send to mobile devices, where ω is
the sliding window size and τ is the threshold to control the
quantities of downloading. For any edge, its weight will be
sent to the group if Γcount > ω ∗ τ where Γcount is this
edge’s uploading frequency within the sliding window.

To this point, it is clear that, although each group does not
have direct access to others’ datasets, but their training pro-
cedure captures the most significant knowledge by replacing
their local weights with the server’s global ones.

F. Privacy Analysis

We analyze what are visible to adversaries to analyze the
privacy protection of our SliceNet.
Parameter server: In [14], gradients during the back-
propagation are disclosed to the server which made it possible
to calculate the values in the output layer as well as the
input layer. Therefore the authors leveraged the exponential
mechanism based on differential privacy. In our work, all intra-
group training is invisible to the parameter server owing to the
encryption, therefore only weights in inter-group knowledge
sharing are visible to the server. Because a reported weight
is the average of weights in each batch, it is not possible for
the parameter server to infer the original weights. Recall that
each weight is calculated from a pass of feed-forwarding and
back-propagation of a single (input, label) pair, and that only
θ proportion of edges are uploaded to the server, it is very
challenging for the parameter server to infer the input from
such limited knowledge. In addition, as discussed uploading
weights instead of gradients greatly decrease the possibility to
solve the training data from equations. By introducing more
uncertainty, SliceNet can achieve high privacy protections
without differential privacy, to get higher model utility.

As for the training purpose, it is the dominator who feeds
the (input, label) to the intra-group training, therefore it is
impossible for the parameter server to manipulate the training
purpose directly. He has no ability to fake the users to train
other DNN models against users’ will. The only manipulation
it may try is to send fake weights to the devices during the
inter-group knowledge sharing phase, but we claim that it is
not possible yet to intentionally manipulate the training goal
only by manipulating several weights during the training. As

DNN training procedure still operates like a black box, no one
can manipulate several weights without seeing training data to
get an accurate model for other purpose usage.

Since we bypass the data collection and all training data
never leave the mobile devices since generated, users hold
ultimate control over their data all the way without any worries
about data exposure, storage intrusion, deletion verification,
re-utilization, data trading, etc..
Other mobile device: They have less knowledge about the
weights in the global DNN than the parameter server, therefore
it will be more challenging for any adversarial mobile device
A to infer others’ input based on this knowledge. However,
each mobile device has access to the output delivered from the
previous layer’s possessor as well as the back-propagated error
from the next layer’s possessor. Considering that the number
of neurons in the input layer is much greater than those in the
first hidden layer, the possessor of the first hidden layer is not
able to recover the input (more variables than the equations
he has). Afterwards, what other next layers’ possessors receive
from the cut edges is the multiplication of the unknown output
and the unknown weight, therefore a single adversarial device
A is not able to recover other devices’ neuron outputs in the
feed-forward. There is shuffling and A may be assigned to the
next layer by coincidence, at which point A knows old weights
of the cut edges incident to the previous layer (belonging to
the previous piece assigned to it). However, at this point, some
weights have been updated already by the new device being in
charge of the previous piece, and A does not know which have
been updated, making its knowledge completely obsolete. Note
that it is not even possible for A to calculate one single output
confidently since it does not know which weight is not usable
anymore. Considering that there is nothing available to confirm
the calculated outputs based on his obsolete knowledge, A
cannot successfully infer the outputs in this case neither. The
same theory holds for the back-propagation as well, therefore
A is not able to infer the training samples.

Additionally our work does not rely on any mix network
like Tor [16] to hide the mobile devices’ identities. SliceNet
ensures mobile devices always have no idea whom they
are communicating with, and the communication contents
are always invisible to the parameter server. Remember we
assume there is no collision attack between mobile devices
and parameter server, thus this wouldn’t introduce any other
new privacy concerns.

V. EVALUATION

A. Experiment Setup

We evaluate our system on two datasets frequently used
for DNN benchmarking – MNIST and CIFAR-10 [17]. For
MNIST, we use 60,000 images for training and 10,000 for
testing, and we use 50,000 for training and 10,000 for testing
for CIFAR-10. We adopted two kinds of deep learning model
– Multi-Layer Perception (MLP), in which layers are fully
connected, and CNN. MLP performs well with data having
small feature space and CNN is specialized in capturing the
complex data with large feature space. So we use MLP on

nn.Sequential {
[input -> (1) -> ... -> (13) -> output]
(1): nn.Reshape(784)
(2): nn.BatchNormalization
(3): nn.Linear(784 -> 400)
(4): nn.BatchNormalization
(5): nn.ReLU
(6): nn.Linear(400 -> 200)
(7): nn.BatchNormalization
(8): nn.ReLU
(9): nn.Linear(200 -> 100)
(10): nn.BatchNormalization
(11): nn.ReLU
(12): nn.Linear(100 -> 10)
(13): nn.LogSoftMax

}

nn.Sequential {
[input -> (1) -> ... -> (13) -> output]
(1): nn.SpatialConvolutionMap
(2): nn.ReLU
(3): nn.SpatialMaxPooling(2x2, 2,2)
(4): nn.SpatialConvolutionMap
(5): nn.ReLU
(6): nn.SpatialMaxPooling(2x2, 2,2)
(7): nn.Reshape(3200)
(8): nn.Linear(3200 -> 128)
(9): nn.ReLU
(10): nn.Linear(128 -> 64)
(11): nn.ReLU
(12): nn.Linear(64 -> 10)
(13): nn.LogSoftMax

}

(a) MLP for MNIST (b) CNN for CIFAR-10

Fig. 2. DNN architectures

TABLE I
TEST ERROR OF SliceNet FOR DIFFERENT SLICING NUMBER

n S-SGD 5 10 15 20 C-SGD
MLP 5.15% 5.29% 3.63% 3.10% 2.62% 1.73%
CNN 46.88% 46.11% 37.65% 34.40% 32.40% 29.54%

0 10 20 30 40 50

Epoch
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Te
st
 e
rr
or

n=5

n=10

n=15

n=20

S−SGD
C−SGD

(a) MLP for MNIST

0 10 20 30 40 50

Epoch
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st
 e
rr
or

n=5

n=10

n=15

n=20

S−SGD
C−SGD

(b) CNN for CIFAR-10

Fig. 3. Convergence of SliceNet varies with slicing number n

MNIST dataset and CNN on CIFAR-10 dataset. Figure 2
shows the architecture of the two models.

Physically deploying SliceNet is temporarily unrealistic in
our experiments since we do not have so many mobile devices,
therefore we run 120 individual processes in a PC to simulate
120 mobile devices. The parameter exchange among devices is
scheduled by round robin protocol. All the training samples are
randomly uniformly distributed among all simulate processes.

For the comparison, we also implemented and tested two
different settings: centralized model, which is the traditional
training done by a central server, and standalone model, in
which a single mobile user forms a group in SliceNet. In the-
ory, the centralized model’s DNN will be more generalized and
reflect the characteristics of all dataset while the standalone’s
model is least general because the training model is a mixture
of personal models highly biased to individual data.

B. Slicing Number Evaluation

We varied the slicing number n among {5, 10, 15, 20} for
120 devices, and NN slicing problem is solved by leveraging
METIS. We randomly distributed the training samples into
these 120 mobile users and group them into {24, 12, 8, 6}
groups respectively. θ and τ is set as 0.5 and ω is set as g to
ensure the equal gain from per group. The test error is shown
in table I. We also show the convergence rate for two models
with different slicing number in figure 3. S-SGD stands for
standalone-SGD and C-SGD stands for centralized-SGD.

We observe that with more slicing pieces, the performance
of training model will get better, while the convergence
rates (i.e., at which epoch the error converges) are similar.

TABLE II
TEST ERROR OF SliceNet FOR DIFFERENT UPLOADING RATIO θ

θ 0.1 0.3 0.5 0.7 0.9
MLP 7.33% 3.83% 2.70% 2.37% 1.93%
CNN 51.41% 46.93% 35.35% 33.26% 31.57%

0 10 20 30 40 50

Epoch
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Te
st
 e
rr
or

θ=0. 1

θ=0. 3

θ=0. 5

θ=0. 7

θ=0. 9

(a) MLP for MNIST

0 10 20 30 40 50

Epoch
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st
 e
rr
or

θ=0. 1

θ=0. 3

θ=0. 5

θ=0. 7

θ=0. 9

(b) CNN for CIFAR-10

Fig. 4. Convergence of SliceNet varies with θ, when τ = 0.5, ω = 10

TABLE III
TEST ERROR OF SliceNet FOR DIFFERENT DOWNLOADING THRESHOLD τ

τ 0 0.2 0.4 0.6 0.8 1
MLP 3.07% 2.91% 2.70% 2.91% 3.14% 5.72%
CNN 35.89% 35.73% 35.35% 36.48% 38.07% 48.07%

This demonstrates that sacrificing certain communication cost
does help improve the performance. The reason is that when
mobile user number is fixed (overall training data is fixed),
more slicing pieces require more users to constitute one
group, which increases the intra-group training’s occurrence
and decreases inter-group knowledge sharing’s occurrence.
Thus each group’s training model has higher generalization
performance, which helps converge to the optimum model.
Also, as we expected, S-SGD’s performance is worst and C-
SGD’s performance is best.

C. Generalization Performance Evaluation

To demonstrate the performance of our model, we compare
our method with centralized model and standalone model. Up-
loading ratio θ controls the server’s information gain from each
group; downloading ratio τ controls each group’s information
gain from other groups; window size ω controls how many
historical parameters are used to update global weights. We fix
m = 120, n = 12, g = 10, and altered these three parameters.

In Table II, we varied θ and let τ = 0.5, ω = 1∗g = 10. As
expected, larger uploading ratio indicates better generalization
performance since sharing more knowledge between groups
will increase global model’s performance. The convergence
is shown in figure 4. θ has no obvious influence over the
convergence rate and SliceNet can converge quickly.

In Table III, we varied τ where 0 stands for downloading
all weights existing in the sliding window, and 1 stands
for downloading nothing from the server (no collaboration
between groups). θ and ω are fixed as 0.5 and 1 ∗ g = 10,
respectively. The relationship between τ and final performance
is not clear except τ = 1. For the rest values, the fluctuation
in the test error is so small that it’s not possible to conclude
there is correlation between τ and the test error.

In Table IV, we varied ω and fixed θ = τ = 0.5. It appears
that when ω ≈ g, SliceNet achieves the best performance.
When ω is close to the group number, then server gains

0 10 20 30 40 50

Epoch
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11
Te

st
 e
rr
or

τ=0

τ=0. 2

τ=0. 4

τ=0. 6

τ=0. 8

τ=1

(a) MLP for MNIST

0 10 20 30 40 50

Epoch
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st
 e
rr
or

τ=0

τ=0. 2

τ=0. 4

τ=0. 6

τ=0. 8

τ=1

(b) CNN for CIFAR-10

Fig. 5. Convergence of SliceNet varies with τ , when θ = 0.5, ω = 10

TABLE IV
TEST ERROR OF SliceNet FOR DIFFERENT WINDOW SIZE ω

ω 5 10 15 20 25
MLP 3.18% 2.53% 3.53% 3.82% 3.76%
CNN 37.15% 34.67% 35.91% 38.61% 38.97%

0 10 20 30 40 50

Epoch
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Te
st
 e
rr
or

ω=5

ω=10

ω=15

ω=20

ω=25

(a) MLP for MNIST

0 10 20 30 40 50

Epoch
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st
 e
rr
or

ω=5

ω=10

ω=15

ω=20

ω=25

(b) CNN for CIFAR-10

Fig. 6. Convergence of SliceNet varies with ω, when θ = 0.5, τ = 0.5

almost same knowledge from each group and updates global
parameters without too much redundant historical records.
Otherwise bias to some group may lead training model to
highly co-adapt to the group’s data, or redundant records will
dilute the up-to-date weights’ importance, which should have
larger information entropy compared with old ones. We show
the convergence in figure 6. When ω ≈ g, SliceNet achieves
the lowest test error but converges relatively slower.

D. Computation and Storage Evaluation

We theoretically calculate the required computation and
storage overhead and compare with the total load in traditional
DNN. In our experiment, we use the same activation function
– ReLU – for all hidden layers as its derivation is simple.
We consider each neuron and weight has unit cost 1, and
build the cost graph. Then we solve it with METIS. We list
the theoretic cost model for one piece in Table V. #max
shows the largest-cost among all the pieces, and #ideal is the
average cost which is achieved when the slicing is perfectly
balanced. The architecture of DNN is usually symmetric, thus
the computation load is well balanced among the devices.

To demonstrate SliceNet can support mobile device’s stor-
age, we list the parameter size of original complete DNN
and slicing pieces in Table VI. Slicing network greatly frees
the storage load for each device and enables Crowdlearning
among resource-restricted mobile devices.

E. Communication Evaluation

All the transmitted data format is float and size is 4B (Byte).
For different slicing number n, we calculate the total commu-

TABLE V
COMPUTATION REQUIREMENT IN IDEAL SETTINGS AND IN SliceNet

(a) MLP for MNIST
n 5 10 15 20

#max 20948 10471 6977 5229
#ideal 20340 10170 6780 5085
ratio 1.03 1.03 1.03 1.03

(b) CNN for CIFAR-10
n 5 10 15 20

#max 362353 181176 120779 90587
#ideal 351782 175891 117260 87945
ratio 1.03 1.03 1.03 1.03

TABLE VI
STORAGE REQUIREMENT FOR COMPLETE DNN AND SliceNet

(a) MLP for MNIST
n 5 10 15 20

Complete #node
#edge

1494
414600

1494
414600

1494
414600

1494
414600

Max #node
#edge

154
22375

81
10338

56
6955

28
5172

dominator’s #node
#edge

794
31360

794
31360

794
31360

794
31360

(b) CNN for CIFAR-10
n 5 10 15 20

Complete #node
#edge

38154
2039936

38154
2039936

38154
2039936

38154
2039936

Max #node
#edge

8346
453792

4756
259330

3500
69533

2697
123080

dominator’s #node
#edge

3082
313600

3082
313600

3082
313600

3082
313600

TABLE VII
THEORETICAL COMMUNICATION COST(KB) PER TRAINING SAMPLE

(a) MLP for MNIST
n 5 10 15 20

#Comm 19.12 33.57 46.46 57.79
#Comm/device 3.18 3.05 2.90 2.75

(b) CNN for CIFAR-10
n 5 10 15 20

#Comm 214.87 331.45 818.11 1034.29
#Comm/device 35.81 30.13 51.13 49.25

nication cost for the parameter server and communication cost
per device in one training sample in one iteration (Table VII).

One sample’s size is 0.77KB and 3KB respectively in
MNIST and CIFAR-10. From the result we see the overall
communication is relatively large, compared with training
sample’s size, but each device shares an acceptable com-
munication cost, almost at the same order with sample’s
size. In addition, slicing more pieces will increase the total
communication load, but the cost for each device will decrease.

VI. RELATED WORK

Research of privacy-preserving learning has been an active
work in machine learning community. Early works like se-
cure multi-party computation (SMC) [18] can help protect
training data, where data is split between multiple parties,
who collaborate to train learning model over whole data,
while no any single party can access to others’ training data
[19]. However SMC imposes too much computation overhead
and is not applicable for deep learning. Differential privacy
[20] is another popular approach, which directly perturbs
original data, or perturbs gradients to update parameters [21],
[22]. Some works also seek for tighter privacy loss budget

[23]. Differential privacy provides strict privacy protection, but
introduces too much noise and degrades model’s performance.

Homomorphic encryption is another kind of protections
from encryption perspective. It enables training over encrypted
data, without exposing the plaintexts [24]. Graepel et al.
[25] focuses on finding training algorithms which can be
implemented over encrypted data. Encrypting training data
can protect users’ privacy when using model’s service while
ensures returning approximately accurate outputs [26]. How-
ever homomorphic encryption only supports addition and
multiplication operations, limits the supported operation times,
and imposes heavy computation overhead, thus is hard to apply
in deep learning.

Shokri et al. [14] provide a similar training scenario with
ours, where training data is locally kept in each device who
will train a local DNN model and share partial gradients with
server to obtain the global DNN model. While it requires
adding noise to gradients to protect privacy, which degrades
performance. Our work doesn’t rely on adding noise, and by
sharing weights, instead of gradients, at the end of each epoch,
instead of each iteration, our work further prevent inferring
knowledge of training data from parameters’ gradients.

To the best of our knowledge, we are the first to research
how to directly deploy DNN training over resource-restricted
mobile devices without privacy compromise. Some previous
work [14], [15] claim their training scenario happens in mobile
devices, but lacks the consideration of mobile devices’ low
computation and storage capacity and thus is impractical.

VII. FUTURE WORK AND CONCLUSION

Our SliceNet strictly protects each participant’s privacy
during the whole Crowdlearning, but one limitation is that the
parameter server is single point of failure, both from privacy
and feasibility perspective. If the parameter server colludes
with one follower, this will greatly threat dominator’s privacy.
In addition, the global DNN model is maintained by the server
and the communication also relies on the server. Our future
work is to decentralize the functionality of the parameter
server and achieve the resistant against the collusion attack.
We will also develop the mobile APP for users to download
to test and evaluate SliceNet in real mobile devices. We would
like to investigate into more factors hasn’t been included in
this paper’s experiment, like energy consumption, asynchrony.

In this paper, we successfully realized Crowdlearning with
our novel architecture SliceNet. Notably, individual data never
leaves the mobile device during Crowdlearning, and our rig-
orous analysis shows the joint computation in Crowdlearning
does not leak individual data neither. Besides, individual data
owners are given the ultimate control on the training pur-
pose. Our extensive evaluation demonstrates Crowdlearning
is feasible via SliceNet who achieves a high generalization
performance and acceptable extra overhead for each device.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[5] M. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning of
the tissue-regulated splicing code,” Bioinformatics, vol. 30, 2014.

[6] J. Qian, X.-Y. Li, C. Zhang, and L. Chen, “De-anonymizing social
networks and inferring private attributes using knowledge graphs,” in
Computer Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on. IEEE, 2016, pp. 1–9.

[7] J. Qian, X.-Y. Li, C. Zhang, L. Chen, T. Jung, and J. Han, “Social
network de-anonymization and privacy inference with knowledge graph
model,” IEEE Transactions on Dependable and Secure Computing,
2017.

[8] X.-Y. Li, C. Zhang, T. Jung, J. Qian, and L. Chen, “Graph-based privacy-
preserving data publication,” in INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, IEEE. IEEE,
2016, pp. 1–9.

[9] J. Qian, F. Qiu, F. Wu, N. Ruan, G. Chen, and S. Tang, “Privacy-
preserving selective aggregation of online user behavior data,” IEEE
Transactions on Computers, vol. 66, no. 2, pp. 326–338, 2017.

[10] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges.” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, 2011.

[11] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch
training for stochastic optimization,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 661–670.

[12] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang et al., “Singa: A distributed deep learning
platform,” in MM. ACM, 2015, pp. 685–688.

[13] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” in Proceedings of the 1998 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 1998, pp. 1–13.

[14] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1310–1321.

[15] H. B. McMahan, E. Moore, D. Ramage et al., “Federated learn-
ing of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, 2016.

[16] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, 1981.

[17] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[18] O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi-
nary version, pp. 86–97, 1998.

[19] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” Journal of Privacy and Confidentiality, 2009.

[20] C. Dwork, “Differential privacy,” in Automata, languages and program-
ming. Springer, 2006, pp. 1–12.

[21] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Advances in Neural Infor-
mation Processing Systems, 2010, pp. 1876–1884.

[22] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069–1109, 2011.

[23] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” arXiv
preprint arXiv:1607.00133, 2016.

[24] L. J. Aslett, P. M. Esperança, and C. C. Holmes, “Encrypted statistical
machine learning: new privacy preserving methods,” arXiv preprint
arXiv:1508.06845, 2015.

[25] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine
learning on encrypted data,” in International Conference on Information
Security and Cryptology. Springer, 2012, pp. 1–21.

[26] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of The 33rd
International Conference on Machine Learning, 2016, pp. 201–210.

