
Graph-Based Privacy-Preserving Data Publication

Xiang-Yang Li∗‡§, Chunhong Zhang†, Taeho Jung§, Jianwei Qian§, Linlin Chen§
∗ School of Computer Science and Technology, University of Science and Technology of China

† State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications
‡ School of Software, Tsinghua University

§ Department of Computer Science, Illinois Institute of Technology, Chicago

Abstract—We propose a graph-based framework for privacy
preserving data publication, which is a systematic abstraction
of existing anonymity approaches and privacy criteria. Graph
is explored for dataset representation, background knowledge
specification, anonymity operation design, as well as attack
inferring analysis. The framework is designed to accommodate
various datasets including social networks, relational tables,
temporal and spatial sequences, and even possible unknown data
models. The privacy and utility measurements of the anonymity
datasets are also quantified in terms of graph features. Our
experiments show that the framework is capable of facilitating
privacy protection by different anonymity approaches for various
datasets with desirable performance.

Keywords—privacy preservation, data publication, graph par-
tition

I. INTRODUCTION

The problem privacy-preserving data publishing(PPDP) [1]

has received wide research interests in the past decades. For

a user u with identification id and sensitive information s,

the privacy is considered leaked when an attacker can infer

the pair (id, s) with high certainty according to the published

anonymity data. Early techniques of PPDP mainly focus on

relational tables stored in database, among them including the

well known k-anonymity [2], l-diversity [3], and data perturba-

tion [4]. The dramatically increasing ability of collecting and

analyzing large amounts of data leads to the research of PPDP

evolving from relational tables to various data models, such

as social networks [5] and temporal/spatial data of Location-

Based Service [6], where the data present large diversity in

terms of structures and secret types. While the basic notion

of privacy, i.e., masking a person in a group where she is

indistinguishable from others, is extended naturally to various

scenarios, a large body of prior literature has been parallelly

explored for particular data model.

A question naturally arises: Is it possible to leverage the ex-

isting privacy preservation methods through a general model?

Can we uniformly define and assess privacy by this model so

as to make comparison among different anonymity approaches

become possible and even intuitive? This motivates us to

propose a novel framework to facilitate a universal anonymity

strategy for various data models. The generality of framework

will face several challenges. First, the framework should be

capable of representing a variety of data types. In general,

datasets may significantly differ in schema, attribute distribu-

tions, as well as privacy concerned. From the privacy point of

view, the information contained in datasets is generally catego-

rized as follows. i) Identifications of objects(IoB): A dataset

is commonly organized as a list of multiple distinct objects

(e.g, persons or companies). ii) Attributes of objects(AoB):

The non-sensitive attributes describe the information of the

objects and usually make them distinguishable from each other

(e.g.,Age or Sex of a person). The combination of partial or

entire of such attributes is typically called quasi-identifiers

QI [7]. iii) Secrets of Objects(SoB): Any sensitive information

that the object tends to keep from disclosure,and the leakage

of which will damage the object’s privacy, is defined as secret.

Preventing disclosure of SoB is the primary goal of privacy

preservation. iv) Relationship between objects(RoB): Many

datasets naturally possess network structures in which various

kinds of relationships between objects are characterized (e.g.,

friend relationship in social networks, or co-author relationship

in paper corpus). RoB can be viewed as special case of AoB

or SoB respectively [8].

Second, as privacy threats are closely related to the assump-

tion of adversary’s prior belief, the framework should be able

to clearly quantify the background knowledge as attacker’s

capability. There are mainly two kinds of assumption for back-

ground knowledge. One ignores the prior belief where every

secret is viewed equally possible for every individual (such

as k-anonymity), the other models the background knowledge

with various types and amounts via different specifications [9],

[10]. Analogously, flexible privacy protection requirements

(e.g.,the disease flu is not thought the same sensitive as HIV)

also need to be taken into account. These properties allow the

framework to prevent potential over-protection by restricting

the assumption of attacker capability, as well as unreasonable

ignorance of threats in practice.

Third, the utility metric of the framework should be en-

tirely independent of specific anonymity approaches and be

generally quantified from the perspective of data usage. It is

common in previous works that the utility is measured by

metrics highly related to privacy algorithms and parameters.

For example, the size k of equivalent class in k-anonymity

is used by utility definition of discernibility [11]. While the

metrics of statistical information, such as mean and corre-

lation, of anonymous datasets are concerned by perturbation

approaches [4], it is not clear whether we can extend them to

other anonymity approaches. Therefore, a privacy independent

utility metric is necessary to provide paradigm for comparing

different privacy strategies.

In this work, we propose a graph-based privacy preservation



framework for data publication. The graph is introduced as

basic methodology for data representation (§II-A), adversary

capability modeling (§II-B), privacy and utility measurement

metric (§III-D), and graph partition algorithm for different

privacy approaches(§IV). The idea to relate dataset to graph

is not entirely new, nevertheless to our best knowledge, there

have been rarely research efforts in the direction of graph-

based privacy preservation framework. Although the relational

database can often be transformed into an information net-

work, our framework is much more general and can handle

various datasets.

A distinguished advantage of our framework is that we

can explicitly encode inherent relevance relationship of data

objects into graph structure, on which the two antagonistic

sides, attack and protection, of privacy preservation can be

coherently articulated. The privacy breach risk as well as

utility evaluation can also be efficiently characterized by

graph properties, which permits placing different anonymity

approaches on a comparable base. The contributions of this

paper include:

• We propose a novel graph representation feasible for

original dataset, anonymity dataset, as well as background

knowledge of adversary;

• We define graph-based privacy criterion and utility met-

rics, which are used to compare the efficiency of different

anonymity approaches on relational tables, social net-

works, and temporal and spatial datasets by experiment.

• We propose a spectrum graph partition algorithm as a

universal method to construct equivalent class as sub-

graph within which the existing anonymity operations are

independently performed.

The rest of this paper is organized as follows. Section II

illustrates general graph construction principle and section III

thoroughly discuss the main building blocks of the framework.

Section IV describes the algorithms of graph partition. Exper-

iments on three datasets are shown respectively in section V.

We review the related work in Section VI and conclude the

paper in Section VII.

II. GRAPH MODEL

A. Data Graph

The first problem of framework we face is how to construct

a general graph for various datasets. Given a dataset T with

arbitrary structures (e.g., a tabular dataset, a social network

structure), we use a data graph G = {U ∪V ∪S,E} to model

the objects by vertices and relations by edges. In particular,

each individual user is abstracted as a single user vertex

u ∈ U , whereas each unique quasi-identifier attribute value

appeared in T is abstracted to an attribute vertex v ∈ V , and

each individual secret corresponds to a secret vertex s ∈ S.

We represent an attribute node as type:value, where type
and value are the attribute’s type and value. The union of

V and S is also called alphabet Σ = V ∪ S of graph G
whose cardinality |Σ| is the number of unique attribute values

contained in dataset T . Note that the vertices of graph are now

just applied to categorical and discrete numerical data where

the attributes have finite domains. The data of continuous-

valued attributes which could be approximated by optimal

discretization with bounded information loss are beyond the

scope of this paper.

The edge of graph G indicates two types of relations

between vertices: semantic relation and correlation relation.

An edge eij is called semantic edge if its two endpoints

have same vertex type. For instance, an edge connecting user

vertices Alice and Bob indicates their friendship in social

network, an edge between attribute vertices age:20 and age:30

reflects the distance in the domain of attribute age. Naturally,

the edge weight ωij of edge eij is selected as the semantic

similarity between two vertices. On the other hand, an edge

connecting vertices with different types represents their corre-

lation and therefore termed as correlation edge. For example,

a user vertex u will connect all its attribute vertices {vi}
and secret vertices {sj} by correlation edges of weight 1.

Fig.1 shows an example of data graph G. A dataset T can be

entirely represented by graph G defined as following without

information loss.

Fig. 1. Data Graph G: solid edges are semantic edges connecting nodes of
same type vertices; dashed edges are correlation edges connecting nodes of
different type vertices. Black nodes are IoB; green and blue nodes are AoB;
other nodes are SoB; one edge between users is secret ROB.

Definition 1: A Data Graph is a graph G = (U ∪ Σ, E)
for dataset T = {ID,A,R} composed by sets of identification

ID, attribute A and relation R. The mapping function Φ(T ) =
{φU , φA, φR} converts objects of dataset T to elements of

graph G:

• Function φU : ID 7→ U maps user identification id to

user vertex u, i.e., u = φU (id);
• Function φA : A 7→ Σ maps attribute a to attribute vertex

v or secret vertex s, i.e., v/s = φA(a);
• Function φR : R 7→ E maps relation r to weight of edge

e, i.e., ωe = φR(r).
Similarly, the reverse function Φ−1(G) = {φ−1

U , φ−1
A , φ−1

R }
can convert graph G to dataset T without information am-

biguity. Consequently, the properties of G and T are same,

where an operation on vertices or edges of graph G can be

associated to certain operations on elements of dataset T .

Thus the privacy guarantees of G and T are guaranteed to

be equivalent to each other.
B. Attack Graph

The data graph G captures the intrinsic properties of dataset

T . Likewise, the background knowledge, denoted as BK,

of adversary can be also modeled as Attack Graph GA =
{IDA∪VA∪SA, EA), where IDA, VA and SA are vertex sets



of identification, attribute and secret respectively. The vertex

sets of GA are allowed to be different to those of data graph

G since adversary may obtain BK from various sources. In

general, the more overlap between GA and G, the more attack

capability the adversary has.

The main difference of GA with G arises from the construc-

tion principles of edges EA. As the adversary is not interested

in data utility, semantic edges between attribute vertices are

in general not necessary and the correlation edge is the only

type in EA. One exception is for semantic edge between

nodes of IDA, which are used to indicate the non-sensitive or

secret relationships between users. If all the semantic edges

are absent, GA is simplified to a bipartite graph where the edge

can only exist between nodes of IDA and ΣA = VA ∪ SA.

In designing the attack graph GA, we must provide means to

explicitly specify the background knowledge BK. Although it

is generally impossible for data publisher to know the precise

BK of arbitrary adversary, the type and amount of BK can

be instead assumed reasonably. Let ωij (omit the notation of

adversary for brevity) be the edge weight of eij connecting

user node idi and secret node sj in attack graph GA. The

basic unit BK that adversary thinks user idi has secret sj with

probability pij is explicitly expressed by assigning ωij = pij ,

which following the basic idea of [9]. Special cases are the

BKs of positive associations and negative associations [10],

that is, idi has secret sj , or idi does not have secret sj , the

corresponding ωij is then set to 1 or 0 respectively. More

complex expression of BKs can be usually represented by

consistent-setting of weights of related edges. For correlational

knowledge [9] such as ”the prevalence of cancer was higher

for users of Age 50 than those of Age 20”, the order constraint

ω(id1with age 50,caner) > ω(id2with age 20,cancer) will be hold to

satisfy this belief. This principle of consistent-setting can be

naturally applied to BKs with similar form such as (id1 has

si) → (id2 has sj) [12]. For the knowledge of same-value

families, i.e., if user id1 of family F = {id1, . . . , idk} has

college education, than the other users of F also tend to have

the same education degree. This belief can be represented by

setting all the ω(idk,college) of F equal to each other.

The selection of BK reflects the assumption for attacker’s

capability. Some existing knowledge representations, such as

knowledge graph, naturally provide sources of various assump-

tions for GA construction [13]. In addition, the original graph

G is always viewed as a good source to extract BK of both data

distribution and particular individuals [9], [14]. For instance, a

simple GA can be directly obtained by extracting a subgraph

from original data graph G, i.e., GA ⊆ G.

III. PRIVACY-PRESERVING FRAMEWORK

A. Architectures

We now sketch the graph based privacy preservation frame-

work F shown in Fig.2. Our framework F is modeled as a col-

lection of function modules along with interfaces among them.

For a dataset T to be published with privacy requirements, the

framework F first converts T to data graph G by a mapping

function G = Φ(T ). The graph G is then partitioned into

a set of subgraphs {gi | i = 1, 2, · · · } by a procedure Π(G)
(presented in next section) to construct anonymity equivalence

classes. The optimization constraints of graph partition arise

from the tradeoff between privacy guarantee and high data

utility. Subsequently, the subgraphs {gi | i = 1, 2, · · · } are

taken as input of anonymization building block A to acquire

Anonymity Graph G∗, which is obtained by using a group

of anonymity operators to graph G (different subgraphs may

need different privacy anonymization methods). The privacy

requirements are posed by data publisher as a set of privacy

principles or explicit privacy guarantees for each user. In

parallel, the attack graph GA is generated by data publisher

according to her assumption of background knowledge. The

risk of privacy leakage of G∗ is evaluated upon disclosure

graph H , which is inferred by seeing G∗ and GA together.

The utility of G∗ is also computed according to graph-

based utility metrics UE and UC respectively. As long as

the evaluations violate the privacy requirements, the process

iteratively goes back to the graph partition. Adjustments on

attack graph GA choice or tradeoff setting between privacy

guarantee and utility impact the evaluations success. Finally,

the eligible anonymity graph G∗ is converted to dataset T ∗ by

inverse function Φ−1, then published.

B. Graph Anonymity Operators

The basic idea of most privacy protection approaches in

literature is to modify the dataset such that a particular user is

indistinguishable with some others, or the association between

user and her secret is broken. We propose anonymity operator,

a sequence of vertex/edge addition/deletion, to generalize

various privacy protection methods. That is, a graph G can be

modified to anonymity graph G∗ by a sequence of anonymity

operators, referred as G → G∗.

For graph G, vertex perturbation is defined as the modifi-

cation to its alphabet Σ. Any elements of Σ can be deleted

or new ones can be added. The operators of vertex addition

and deletion are denoted as v+ and v− respectively. Any

modification about vertices can then be decomposed into an

operator sequence (PS) of v+ and v−. The primary vertex

perturbations include: Generalization (e.g., change age:20 to

age:[10-30]), Randomization (e.g., change a vertex to set of

vertices and assign a probability distribution to these vertices),

Aggregation (grouping a set of vertices to a new virtual vertex),

and Permutation (shuffling a subset of vertices),etc..

Similarly, the edge perturbation operators, denoted as

edge addition e+ and deletion e−, converts edge set E to

anonymized E∗. Any modification on edge can also be de-

composed into an operator sequence of e+ and e−. The typical

edge perturbations include: Changing of endpoints of edge,

Modification of edge weight, Aggregation of a group edges,

and Division of an edge e into a group edges (which needs

proper weight assignment on edges). A particular perturbation

approach can be expressed by the combination of vertex

perturbation and edge perturbation. An instance of anonymity

operators for three anonymity approaches are shown in Fig.3.
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Fig. 2. Graph-Based Privacy-Preserving Data Publishing Framework F

Fig. 3. Anonymity operators sequence for three anonymity approaches. (a) In
original data graph G, users u1 and u2 have two attributes and one secret. (b)
The anonymity graph G∗ is produced by generalization [1] approach such as
k-anonymity. The attribute vertices a1 and a2 are generalized to a new vertex
labeled by range [a1−a2]. This outcome can be viewed as the results of vertex

perturbation operator sequence PS = (a−1 , a−2 , [a1 − a2]+) and edge per-

turbation operator sequence PS = (e−u1a1, e
−

u2a2, e
+
u1[a1−a2]

, e+
u2[a1−a2]

).

Then similar operations are applied to attribute vertices b1 and b2. (c) The
secrets s1 and s2 are perturbed [1] to s∗1 and s∗2 by adding noises to s1 and

s2 respectively, which could be described by PS = (s−1 , s−2 , s∗+1 , s2∗+).
(d) The G∗ is anonymized by anonymity approach bucketization [12] via

PS = (e−u1s1, e
−

u2s2, e
+
u1s2, e

+
u2s1).

C. Privacy Inference

The privacy violation of user is claimed when (id, s) is

correctly inferred with high probability. The graph represen-

tations of datasets and assumption of adversary’s background

knowledge could facilitate the modelling of general privacy

inference conducted by attacker in a universal way.

Before going into the detail, it is important to clarify

the different roles of anonymity graph G∗ and attack graph

GA for secret inference. The associations between users and

secrets, specified by path (edge) (u, s), are provided by the

anonymity graph G∗. A small number of secret nodes (both

explicit secrets such as salary=20k and implicit secrets such

as salary=low in salary hierarchy) that a user node can reach

along arbitrary paths indicates a limited diversity or a small er-

ror margin of secrets that the user might have. Furthermore, the

correlations between secrets and attributes, specified by path

(s, u, v), are also represented. The association and correlation

makes G∗ potentially vulnerable with the presence of attack

graph GA in two aspects. On one hand, the attribute vertices

of victims in GA can help the adversary to de-anonymize u
such that the (u, s) association is re-identified as (id, s) which

apparently violates the privacy principles. On the other hand,

the combination of correlation and BK from GA could be used

by the adversary to further prefer a unique association between

u and s rather than others observed from graph G∗. In general,

estimating privacy disclosure of G∗ is a complex problem

(e.g.,#P -complete [12] or NP-hard [10]) when background

knowledge are involved. Fig.4 gives a simple case of privacy

inferring similar with [9] when graph G∗ is seen by adversary

with background knowledge GA. The formal algorithm of

privacy leakage estimation under general graph context would

be our further work.

Fig. 4. Example of privacy inferring with background knowledge. Three
users (with id1, id2, id3) in original graph G have two attributes (a, b)
and one secret (s). The anonymity graph G∗ is obtained by anonymizing G
with l-diversity, where the attributes (a1, a2, b1, b2) of the three users are
generalized by edge addition denotes as dashed lines between user nodes and
attribute nodes. The identifications id of users are removed in G∗. If there
is no background knowledge, the adversary’s belief that user id3 has secret
s2 is 1/3. Assume the adversary knows exactly the attributes of all users.
The prior belief of secrets of each user are represented by edge weights of
attack graph GA. The values on solid line between node id and s indicate
the belief on true secret, and the values on dashed line are the belief on false
secret. First, the adversary identifies nodes u1, u2, u3 as potential candidates
of id1, id2 and id3 according to the similarity of their attributes. Then based
on Bayesian theorem, the adversary tries to re-construct the disclosure graph
H by maximum likelihood estimation and infer the posterior belief on secret
of each user. In our case, the probability of H is Pr(H|GA) = (0.9×0.9×
0.3)/((0.9× 0.9× 0.3) + (0.9× 0.1× 0.7) + (0.1× 0.9× 0.7)) = 0.66,
which is the maximum of all the possible disclosure graphs H′. That means,
the adversary’s belief that user id3 has secret s2 increases from prior 0.3 to
posterior 0.66. The adversary could successfully reconstruct the exact original
graph G with high probability since H is identical to G.

D. Privacy and Utility Metrics

1) Privacy: The example of Fig.4 expresses the privacy
criterion of our framework. The privacy of user idi is said to
be protected if the adversary’s gain between prior probability
Pri and posterior probability Pr′i on the secret sj is bounded
by a reasonable threshold. This is formally stated as:

δ(Pri, P r
′

i|GA, G
∗) ≤ ǫ(idi, sj) → δ(ωij , ω

′

ij) ≤ ǫ(idi, sj) (1)



where the function δ(x, y) = |x − y| is a measurement

of privacy gain of adversary, and ω′
ij is the edge weight in

disclosure graph H inferred by adversary upon seeing the

anonymity graph G∗. The threshold ǫ is parameterized by

particular (idi, sj) so as to permit setting individual protection

requirement for different users. This consideration enables per-

sonal privacy description which essentially brings framework

F the flexibility for various scenarios. A small ǫ means the

adversary is merely able to gain trivial privacy information of

user. An anonymity graph G∗ is said to be privacy preserving

against attack capability defined by attack graph GA if all

users satisfy Eq. (1) and denoted as

δ(Pr(S), P r′(S)|GA, G
∗) ≤ ǫ (2)

where S is the set of secrets and ǫ = {ǫ(idi, sj)} is the

collection of privacy leakage thresholds for all users. Note that

the privacy measurement of graph, the change of adversary’s

world-view upon seeing the data, is consistent with works such

as [3], [9]; however, we extend it under graph context.

2) Utility: While the difference between attack graph GA

and disclosure graph H is used to measure the risk of privacy

leakage, the difference between anonymity graph G∗ and

original data graph G is used as a straightforward selection for

utility metric. We use statistical properties of graph as basic

measurement to quantify the perceived utility by potential

applications. The commonly applied statistical properties of

dataset include expectation and correlation which we will re-

define on graph. For ease of computation, we define a bipartite

graph Gb which contains all the vertices and correlation edges

of G. The expectation of attribute vertices with attribute type

Aj is defined as EAj
, 1∑

i deg(vi)

∑

i vi × deg(vi), vi ∈ Aj ,

Where deg(v) is node degree of vertex v in graph Gb. If Aj is

categorical attribute, then EAi
is a vector rather than a scalar

where each entry is the ratio of degree of vi to the summation

of degrees of all attribute nodes. The expectation of graph G
is then defined as below

EG = (EA1
, . . . , EAk

) Aj ⊂ Σ (3)

The expectation EG∗ of G∗ can be similarly defined.

Meanwhile, preservation of dependency among multiple

attributes is also significant. For computing efficiency, we also

define attribute graph GΣ which is actually a project graph

of G. The vertices of GΣ consists of elements of alphabet

Σ = V ∪S. If there exists a two-hop path from vi to vj com-

posed by two correlation edges of G, then a correlation edge

between vi and vj is constructed in GΣ. The edge weight ωij

is accordingly defined as the number of distinct paths, which

represents the co-occurrence frequency of the two attributes.

It can be seen that the correlation edge of GΣ is actually the

weighted projection of correlation paths of G. Note that the

semantic edge set of GΣ is the same as that of G. Given this

definition of GΣ, the correlation of datasets before and after

anonymization are directly captured by adjacency matrix of

original attribute graph GΣ and anonymity attribute graph G∗
Σ

respectively. The adjacent matrix of GΣ is therefore called

correlation matrix CG of graph G, that is, C
|Σ|×|Σ|
G = {ωij}.

Given the definition of expectation and correlation of graph

G and G∗, the data utility is quantified by the differences of

them before and after anonymization:
{

UE = δE(EG, EG∗)

UC = δC(CG, CG∗)
(4)

A choice of δE is the vector similarity (e.g., cosine similarity),

and the function δC can be correlation coefficient of two

matrices. Obviously, UE = 1 and UC = 1 correspond to the

maximal utility with zero data distortion, and UE = 0 and

UC = −1 correspond to the minimal utility.

IV. GRAPH PARTITION FOR ANONYMIZATION

While F provides a universal framework to model and

evaluate the privacy preserving strategy, one of the basic

requirements that F should satisfy is to support various

anonymization algorithms efficiently. By endowing the users

and attributes with relation and semantic metrics via edges,

the privacy protection can be generally considered as graph

partition problem of G. Appropriate anonymity operator se-

quences are applied to each partition rather than to the global

graph such that we apply the best anonymization method on

each partition. In addition, the graph partition permits flexible

subgraph size estimation according to data properties and

privacy protection criteria.

A. Problem Formulation

Let cut Π(G) = {gi | i = 1, 2 · · · ,m} be a partition

for graph G. Each subgraph gi is viewed as an anonymity

equivalence class (EC) and the users in gi are anonymized by

the same approach to construct anonymity subgraph g∗i , that is,

gi 7→ g∗i . Note that while a user vertex u belongs to only one

of the subgraphs, the attribute vertex v or secret vertex s might

belong to multiple subgraphs simultaneously. For example,

the attribute Gender:Male or secret Location:Chicago tend to

appear in many subgraphs such that the integration of user

u and all its neighbours are preserved in gi. Thus gi might

overlap with each other on their common attribute vertices.

The objective function of our graph partition is naturally

posed according to trade-off between privacy guarantee and

utility. Intuitively for a subgraph gi, when each user satisfies

the privacy requirement stated by Equ.1, the utility will be

high if the similarity of attributes in gi is maximized (thus

it supports better anonymization such as k-anonymity). This

intuition leads to a privacy-oriented graph partition algorithm

implemented based on attribute graph GΣ (as defined in

section III-D2). A cut Π(GΣ) where each subgraph has large

summation over weights of both correlation edges (holding

more correlation properties) and semantic edges (large weight

means high similarity) will produce desirable utility. This

statement is equivalent to minimizing the edge weight sum-

mation across subgraphs for both edge types, which can be

solved as the graph partition with minimum cut. The advantage

of performing graph partition on attribute graph GΣ instead

of G mainly arise from its smaller size since user nodes of



G are not contained in GΣ. This could significantly alleviate

the overhead of computation when the size of alphabet |Σ| is

much less than the user population |U |.

B. Graph Partition Algorithm

The problem of graph partition with minimum cut has

been extensively studied, among which we adopt the spectrum

graph partition paradigm [15]. Assume cut(V1, V2) divides

the vertices of GΣ into two subsets V1 and V2. Let vector

x = (x1, . . . , xn)
T be the partition assignment of vertices

such that xi = 1 when vi ∈ V1 and xi = −1 when vi ∈ V2.

According to Laplacian matrix L of graph, we have

xTLx =

2
∑

p=1

∑

(vi,vj)∈Vp

(xi−xj)
2ωij +

∑

(vi,vj)∈cut

(xi−xj)
2ωij

(5)

Where ωij is the weight of edge eij . When vi, vj belong to

the same subsets, xi−xj = 0. Thus the first term on right side

of Equ.(5) equal to 0. When vi, vj belong to different subsets

and there is edge between them, i.e., eij ∈ cut(V1, V2), it

will contribute 4ωij to the summation of last term of Equ.(5)

. Thus, the last term can be viewed as the cost of the cut.

In addition, to divide graph into two balanced parts with

approximately equal amount of nodes, we have the following

objective function:

minΠ(GΣ) =
cut(V1, V2)

|V1|
+

cut(V1, V2)

|V2|
(6)

The eigenvalues and eigenvectors of normalized Laplacian

matrix L provide information to solve the optimal problem of

Equ.6. The eigenvector v2 = (ν1, . . . , νn) (where
∑

i νi = 0),

corresponding to the second smallest eigenvalue λ2 of L, is

treated to be the cut vector of graph GΣ. The vertices of GΣ

is then divided into two parts with minimum cut in the way

that

vi ∈ V1 if νi ≥ c; vi ∈ V2 if νi < c (7)

The constant c is called splitting value, which can be chosen

by principles including bisection (c is set as the median value

of eigenvector v2 , used in experiment), ratio cut, sign cut, or

gap cut [16].

So far we have two subsets V1, V2 of GΣ, However, the

corresponding subgraphs g′1 and g′2 cannot be directly obtained

by solely adding edges between vertices within each vertex

subset because all the attributes of a user u are not guaranteed

to be assigned to the same subset. To keep the integration

of user’s attributes, two user subsets U1 and U2 are then

produced based on V1 and V2. For a particular user u, if

all her attribute and secret vertices are assigned to the same

subset, say V1 without loss of generality, we simply assign u
to U1. Otherwise if some attributes belong to V1 but others

to V2, the relative significances of different attributes in terms

of data representation are used to decide the assignment of

u. Approaches such as PCA (Principle Component Analysis)

for categorical variables [17] can be explored to compute the

relative significances among attributes. The node u is then

assigned to Ui(i = 1, 2) (set of user vertices) such that the

corresponding Vi contains the most significant attribute of

u. If all the attributes are treated equally significant, u is

assigned to Ui such that Vi contains the majority of attributes

of u. In addition to above assignment principle, there is also

a constraint k posed on the minimum size of U1 and U2 in

order to satisfy the privacy requirement of equivalent class.

After assigning all users to U1 or U2, two new attribute

graphs are produced accordingly. The two data graphs gener-

ated by users in U1 and U2 are projected to attribute graph

g′1 and g′2 respectively. As mentioned before, g′1 and g′2
might overlap to each other as users of U1 and U2 could

have common attributes. The same graph partition process

described above are then applied to g′1 and g′2 respectively.

If the size of Ui is smaller than 2k (for k-anonymity method),

the graph partition will stop on g′i and g′i acts as an element of

partition Π(GΣ). Sometimes the g′i cannot be further divided

because all the users of Ui already have identical or similar

attributes to each other even the size of g′i is larger than

2k. In this case, the g′i is directly added to Π(GΣ). The

graph partition will iteratively process until no additional

attribute subgraph can be partitioned. At this point, we have the

optimal partition Π(GΣ) = {g′1, . . . , g
′
m}. The corresponding

Π(G) = {g1, . . . , gm} can be simply obtained by generating

gi upon g′i according to graph projection principle.

The graph partition process could be simplified when graph

G is a social network with only user nodes. In this case, the

graph partition is applied on G instead of GΣ. Each gi is a

subgraph of G and doesn’t overlap with other ones, thus can

be obtained directly on V1 or V2 instead of U1 or U2. For

a partition {g1, . . . , gm}, we cluster the set of gi according

to their structure features(e.g.node degree and edge number)

such that the similar subgraphs are assigned to the same group.

Therefore, the outcome partition is a set of subgraph clusters,

referred as Π(G) = {{g1j1}, {g2j2}, . . . , {gmjm}} where each

cluster {giji} has at least k subgraphs.

Given the partition Π(G), the anonymity operators are

applied to each gi to fulfil privacy criteria. In the case of

social network, the anonymity operators are used within each

{giji}. The anonymity graph g∗i is produced by anonymization

function A, i.e.,g∗i = A(gi). The goal of function A is

to ensure that the disclosure graph H meets the privacy

requirements imposed by data publisher.

V. EXPERIMENT

A. Datasets and Anonymity Approaches

We make use of three different datasets in our experiment

to evaluate the efficiency of framework F . First, the Adult

dataset [3] from US 1994 Census data is selected as case of

dataset with a typical table schema. 30, 162 records and 9

attributes (Age, Workclass, Education, Marital-status, Occupa-

tion, Salary, Race, Sex, Native-country) are selected, where the

salary and occupation are treated as secrets alternatively. The

second dataset is social network of Facebook which consists

of 4039 user nodes and 88234 edges [18], and is divided

into 10 ego networks. The associated user profile for each



TABLE I
GRAPH PROPERTIES AND ANONYMITY APPROACHES OF DATASETS

# Adult
Facebook

Brightkite
Ego Profile

graph GΣ G GΣ GΣ

record 30162 4039 4039 4491151

vertex 166 4039 396 5044788

edge 9362 174263 28469 9.42292 × 1012

semantic 2556 174263 2520 9.42291 × 1012

correlation 6806 n/a 25949 4491151

anonymity

approach

Generali

zation [20]

pertur

bation [5]
swapping [21] obfuscation [6]

user node includes average 21 attributes in which 6 attributes

(birthday, education degree, education type, education with

gender, location, work with) are selected for our experiment.

The final dataset is Brightkite [19] with 4, 491, 151 check-

in records which consists of times and GPS locations. The

detail of graph properties of three datasets are shown in

Table I: record number, node number, edge number including

semantic edges and correlation edges respectively. For clarity,

the ego networks and user profile of Facebook are shown

separately. Note that except the ego network of Facebook,

graph properties are calculated on attribute graph GΣ instead

of G.

To show the capability of framework F for accommodating

various anonymity algorithms, we choose different approaches

to anonymize subgraph gi of three datasets, which are given

in the last row of Table I. Note that ”we choose” here

means we only adopt the data modification approaches and

privacy criterion used by the four anonymity strategies, yet the

constructions of equivalent class (EC) are all complemented

by graph partition rather than those provided by them. For

example in social network of facebook, we add/delete nodes

and edges to make two subgraphs gi and gj isomorphic to

each other to protect against structure attack, which remains

the same with [5]. The gi and gj , however, are obtained

by graph partition rather than the finding ways of Potential

Anonymization SubGraph used in [5]. The framework F is

implemented by 64bit Windows 8 system with Core2 T6500@

2.1GHz CPU and 4G memory.

B. Results

We investigate the efficiency of framework F from per-

spectives of privacy, utility, and runtime performance. For

simplicity, the attack graph GA is assumed uniformly dis-

tributed over all secrets, thus we only need to be concerned

with the privacy leaked by anonymity graph G∗. In this case,

the privacy guarantee of G∗ is naturally determined by the

anonymity approach and is not presented for the limitation of

space.

The utility of G∗ defined by Eq.(4) for Adult dataset

is shown in Fig.5. The UC and UE are computed under

different parameters. In this figure, the utility decreases with

the increase of minimal constraint k on user number contained

in subgraph gi since more anonymity operators, necessary to

make users indistinguishable, deteriorate the utility. Note that

the actual size of gi has large diversity. For instance, three
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Fig. 5. Graph utility of Adult dataset

TABLE II
UTILITY COMPARISON FOR FRAMEWORK AND FLASH.

Framework F flash

# gi Entropy # EC Entropy

Adult

salary

k=1=2 153 44983 30 93880

k=5, l=2 151 45016 30 93880

k=1=2 700 30412 15 123947

Adult

Occup.

k=l=6 73 104868 15 123947

k=l=10 37 112723 15 123947

k=l=12 31 119919 8 151819

check-in
k=5 900 49032 12 77884

k=30 151 65656 12 77884

attributes (Age,Education,Marital-status) are selected for 5-

anonymity (|QI| = 3 and k = 5), the maximal number of

users in gi can be as high as 320 in all the 1367 resulting

subgrpahs because the 320 users have exactly identical at-

tributes, which can be published directly without any further

partition. The utilities generally get worse when more attribute

types are involved. That complies with previous observation

that higher dimension datasets are harder to be anonymized

with a desirable utility.

To comparison, we also anonymize Adult using l-diversity

by ARX, which implements flash [20] and is a comprehen-

sive tool for data anonymization. The utilities of G∗ are

re-computed using Non-uniform entropy(entropy for short)

adopted by ARX. The larger the entropy, the worse the utility

is. The entropy of Adult by flash is obtained with three

attributes(Age,Education,Marital-status) and secrets salary or

occupation. Different parameter combinations (k, l) are tested

for comprehensive comparison. Note that the minimal number

k of users in gi is set same to the parameter k of l-diversity.

The results in Table II clearly show that our framework F
outperforms flash in terms of utility. The number of subgraphs

gi is far greater than that of ECs obtained by flash, which in-

dicates finer granularity of anonymity and hence higher utility.

In addition to Adult, the check-in dataset is also anonymized

by k-anonymity. The attributes time and location are treated

as QIs in ARX to comply with the processing requirement of

flash. The entropy of framework F is shown also smaller than

that of flash on this dataset.

The utility of anonymized graph G∗ for facebook and

check-in datasets are summarized in Table III. For social ego

network, the number of user nodes in each subgraph of cluster

{giji} ranges within [h, 2h−1], where h = 50 is appropriately

selected according to experiment results. The perturbation

using node/edge addition/deletion is applied to each subgraph

in the same cluster to make them isomorphic and therefore



TABLE III
GRAPH UTILITY OF FACEBOOK AND CHECK-IN

Dataset UE UC Runtime(s)

Ego(k=5) 0.808 0.412 164

profile(k=10) 1 0.725 14

check-in(k=10, filter@5) ≈ 1 0.124 891

check-in(k=20, filter@10) ≈ 1 0.085 707

check-in(k=30, filter@15) ≈ 1 0.072 576

k-anonymity is achieved in terms of network structure. The

anonymity approach applied for facebook profile is data swap-

ping [21]. The profile of 10 ego networks are independently

processed and the average utility are given in Table III. Since

the swapping only changes the connection between user nodes

and attribute nodes without really change their values, the UE

always equals to 1 which indicates zero distortion of data

expectation. The average UC for 10 profiles is 0.72528, that

means the anonymized user profiles are relative similar to the

original ones. The check-in data is anonymized by replacing

the real time and location with faked ones drawn from the

vertices of time and location in the same subgraph according

to their probability distribution. The parameter filter@m is

used to select the m nearest neighbor vertices as the candidates

for replacement. The UE is approximately 1 and UC decreases

with the increase of user number constrain k, which behaves

similar to that of Adult. To reduce the computing overhead,

the records in check-in data are pre-clustered according to

the similarity of times and locations. The average number of

records in clusters is 4539 and the utility shown in Table III

is the mean over all clusters.

The runtime of framework F is also shown in Table III,

which consists of several stages from data initialization to

utility calculation and varies mainly according to graph size

and anonymity approaches. For instance, the total runtime to

anonymize facebook profile is only 14 seconds which is much

smaller than those of other datasets since the small size of its

attribute graph GΣ. To illustrate the effect of each stage, we

take Adult as an example and plot the runtimes in Fig. 6. It is

not surprising that the graph partition takes much more time

than other steps and contributes much to the total overhead.

Obviously, the computational overhead of runtime decreases

with the growing of subgraph size constraint k because large

k will usually bring large subgraphs such that fewer iterations

in graph partition are needed. The runtime also increases when

more attribute types |QI| are involved. As the framework F
typically takes about tens of seconds, the runtime of flash is

only approximately a few seconds. However, the significant

gain on utility still suggests the comprehensive efficiency of

framework F .

C. Computation complexity

Without loss of generality, we take k-anonymity as example

to illustrate the computation complexity of graph partition

algorithm, that is, O(|V |3 + |A|2 · n · log2
n
k
). |V | is the total

number of vertices in attribute graph GΣ, |A| is the number

of attribute types of GΣ, n is number of records contained

in dataset T , and k is the parameter of k-anonymity. The

term |V |3 comes from the matrix decomposition calculation
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for eigenvalues and eigenvector, n/k is the average times of

graph partition when graph is evenly partitioned and every

subgraph has the size of k, therefore log2(n/k) is the average

depth of partition iteration. The O(|V |3) complexity can be

further optimized by parallel distributed algorithms when the

scale of graph increases.
VI. RELATED WORK

The analysis methodologies of associations among identi-

fication, quasi-identifier, and secret are mainly based on the

representing data models, where the lattice [2], set [22], metric

space [23], and graph [24] are prominently explored.

For dataset which does not appear like graph, the most

intuitive choice of graph constructions is from instance level,

i.e., a vertex represents a user and an edge represents the

relation between users [2], [25]. The attribute level graph

is also extensively employed. The vertices are attributes and

edges are used to represent the marginal difference [26],

privacy indiscrimination property [25], and semantic distances

[27]. For dataset with original form of graph, such as social

networks, [28] integrated the structural and attribute similari-

ties by inserting a set of attribute vertices to social network.

The anonymity strategies for graph mainly includes edge

randomization, cluster based generalization, and k-anonymity

via edge modification [8]. The k-automorphism [24] is a well

known instance among them. The generalization approaches

group vertices and edges into super-nodes and super-edges [8],

where the macro-properties consisting of aggregation descrip-

tion of super-nodes are published and the micro-properties in

super-nodes are hidden. All these definitions of graph could

be viewed as specifications of our framework F .

Among the frameworks for privacy preservation, [29] uni-

fied multiple privacy models, where whether a user is in the

published dataset or not is viewed as privacy. FRAPP [30] fo-

cused on randomized algorithms where each tuple of database

is perturbed by replacing it with a randomly chosen tu-

ple according to a predefined probability distribution. The

HYDRA [31] was proposed for cross-platform user iden-

tity linkage via heterogeneous behavior modeling. Inspired



by Pufferfish [32], the Blowfish privacy [25] controlled the

amount of information disclosed and permitted more utility

since not all properties of an individual need to be kept

secret. The framework of versatile publishing [33] specified

the privacy requirements of publishing a microdata table as

an arbitrary set of privacy rules. Besides anonymization, the

frameworks of privacy preservation were also studied by

cryptography-based approaches [34], [35]. Our framework is

more general in the sense that it provides a universal way to

comprehensively accommodate various anonymity approaches

and privacy criteria.
VII. CONCLUSION

In this paper we present a general graph-based privacy

preserving data publication scheme. Most existing privacy

protection approaches could be viewed as special cases of our

framework. While different privacy threats are enumerated by

previous works, the framework provides a potential to derive

unknown privacy threats under new scenarios or assumptions,

which are rarely investigated by previous literature. Clearly,

the framework is only the first step to explore the power of

graph for privacy preservation. A set of fascinating questions,

such as the potential extension to differential privacy [36],

[37], and the generation principles of attack graph GA for var-

ious specified background knowledges, need to be addressed

to fully materialize the power of such graph-based framework.
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