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Abstract—Social network data is widely shared, transferred and published for research purposes and business interests, but it has
raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize
users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social
networks have been proposed. However, most existing approaches assume specific and restrict network structure as background
knowledge and ignore semantic level prior belief of attackers, which are not always realistic in practice and do not apply to arbitrary
privacy scenarios. Moreover, the privacy inference attack in the presence of semantic background knowledge is barely investigated. To
address these shortcomings, in this work, we introduce knowledge graphs to explicitly express arbitrary prior belief of the attacker for
any individual user. The processes of de-anonymization and privacy inference are accordingly formulated based on knowledge graphs.
Our experiment on data of real social networks shows that knowledge graphs can power de-anonymization and inference attacks, and
thus increase the risk of privacy disclosure. This suggests the validity of knowledge graphs as a general effective model of attackers’

background knowledge for social network attack and privacy preservation.

Index Terms—Social network data publishing, attack and privacy preservation, knowledge graph.

1 INTRODUCTION

Many online social networking sites like Facebook and Flickr
have been generating tons of data every day, including users’
profiles, relations and personal life details. Social network data can
be released to third-parties for various purposes including targeted
advertising, developing new applications, academic research, and
public competition [16], [26], [48], [56]. However, publishing
social network data could also result in privacy leakage and thus
raise great concerns among the public. Naively removing user IDs
before publishing the data is far from enough to protect users’
privacy [6], [36].

The privacy issue in network data publishing is attracting
increasing attention from researchers and social network providers
[6], [24], [33]. Various privacy attack and protection techniques
have been proposed, including k-anonymity [50] based techniques
(e.g., k-degree anonymity [33]), and graph mapping based de-
anonymization (e.g., [24]). Unfortunately, previous works have
three main limitations. First, most of the prior attacks only focus
on de-anonymization (also referred to as re-identification), that is,
mapping a node in the network with a real person. Yet how the
attacker acquires and infers users’ privacy after de-anonymization
was barely discussed before. Second, previous works have specific
assumptions about the attacker’s prior knowledge (also referred to
as background information and we will use them interchangeably
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hereafter). Some assumes the attacker is weak and only has a
specific type of information, such as node degrees [33]. Others
assume that the attacker possesses a pure topological network
(without user profiles) which overlaps with the published network
data, such as [24]. The attacker is often assumed to be 100 percent
sure of her prior knowledge. Conversely, some, if not much, of the
attacker’s knowledge is probabilistic in the real world. Under such
ideal assumptions, the data anonymization methods proposed are
unable to defend against arbitrary attackers who may possesses a
large variety of knowledge of the auxiliary information about the
target users. Third, they typically do not consider the scenario
that the attacker could exploit correlations among attributes to
make inference about users’ sensitive attributes. Actually, the
attacker can not only read users’ attributes directly from the
published data, but also infer some attributes according to others.
Take salary as an example, it is correlated with multiple attributes
including gender, education and occupation, e.g., working as a
doctor strongly implies high salary.

To overcome these limitations, our goal is to construct a
comprehensive and realistic model of the attacker’s knowledge and
use this model to depict the privacy inferring process. Hopefully,
our model can represent attackers that are more real than those in
some relate work which are assumed to have only a limited knowl-
edge of the target victims. The significance of our work lies in
providing a better understanding of the attacker’s prior knowledge
and privacy inference, alerting social network publishers to the
serious privacy leakage risks in reality, and leaving implications
to researchers for designing stronger privacy protection (e.g.,
anonymization) techniques without underestimating the attacker’s
capabilities.

We are facing three challenges. First, it is hard to build
such an expressive model that covers all of the attacker’s prior
knowledge, given that she may have various knowledge, varying
from node profiles and degrees, to link relations and neighborhood
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Fig. 1. De-anonymization with background knowledge: Although 2-
anonymity is satisfied, users can still be de-anonymized by using background
knowledge and solving maximum weighted bipartite matching.

subgraphs (called structural property), some of which are even
probabilistic. Second, it is difficult to model the privacy inference
steps, since the attacker may have various capabilities and tech-
niques. She could be either computationally powerful or weak.
She may have knowledge of some correlations among attributes,
which are learned from information sources or by data mining.
She may design her own algorithms to make inference with her
prior knowledge and computation power. Third, it is challenging
to quantify privacy disclosure. There has been no explicit and
unified definition of privacy yet, let alone privacy disclosure’s
quantification.

In this paper, we will model the attacker’s prior knowledge
using knowledge graphs [21] and use them to express the two
attacks stages — de-anonymization and privacy inference. We
transform the problem of de-anonymizing a group of people into
the maximum weighted bipartite matching problem. A simple
example is given in Fig. 1, where the target real people (green
circles) are connected to their candidate nodes (blue circle) in the
published graph that are similar to them. The weights on the links
represents the similarity scores. Solving the matching problem
will contribute to the best de-anonymization. The details will be
presented in Section 4.

Fig. 1 also reveals that previous k-anonymity based
anonymization approaches are vulnerable to attacks when the
attacker has more knowledge than assumed. For instance, suppose
the published graph satisfies 2-anonymity. So for each target
person, there are two nodes in the graph both of which are the
possible match of this person. However, somehow the attacker
gets to know that node d is very likely to be Dave by using
her background knowledge (so she sets the weight of “d-Dave”
to a greater value, say 0.9). By finding the maximum matching
of the bipartite, all four users will be correctly de-anonymized,
even though 2-anonymity is completely satisfied for Alice, Bob,
and Cindy. This shows that de-anonymizing one user may induce
a chain reaction in de-anonymizing other users. Therefore, it is
indicated that k-anonymity based approaches are not resistant to
the background knowledge attack.

In the knowledge graph, a confidence score is attached to each
piece of knowledge to reflect the extent of the attacker’s belief in
it. During the second attack stage, the attacker makes inferences
of users’ private attributes and updates these confidence scores.
Finally we can use the variation of the confidence scores to inflect
the attacker’s information gain and to quantify privacy disclosure.
We will illustrate our solution in detail later.

In general, our contributions can be summarized as follows.

1) To the best of our knowledge, we are the first to apply
knowledge graphs to model the attacker’s background knowledge
in social network data publishing. This is shown to be more
realistic and complete than previous attacker models. (Section 2)

2) We utilize this model to depict the privacy inferring process,
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GV,E) Original graph
Ga Anonymized graph
Gp Prior attack graph
Gy Posterior attack graph
VY User node set
YA Attribute node set
gvu User-to-user links
gva User-to-attribute links
gl Attribute-to-attribute links
Na Node number of G
Ny Node number of G,
a A user node in G,
D A user node in G,
t = (s,p,0) | A triple with subject s, predicate p, and object
o
¢, c(t) Confidence score of a triple/link
Sa(p,a) Attribute similarity of two user nodes p, a
Sr(p,a) Relational/Structural similarity of two user
nodes p, a
S(p,a) Node similarity of two users p, a
S(p,a) Neighborhood similarity of two users p, a
Sim(Gp,Ge) | Similarity of two graphs G, Ga

TABLE 1: Frequently used symbols

i.e., how an attacker de-anonymizes and infers users’ private at-
tributes, which helps to determine and measure privacy disclosure.
(Section 3)

3) On this model, we propose a de-anonymization scheme,
for which two heuristics are designed, and we also present an
approach to privacy inference. (Section 4)

4) We present an experiment of our attack on two real-
life social network datasets. The extensive evaluation shows that
our attack technique is realistic and powerful. For example, by
knowing the noisy information of 0.5% of the total users in a
social network, the attacker can successfully de-anonymize over
60% of them in our study, i.e., matching correctly 60% of the users
in the prior knowledge graph to nodes in the anonymized graph.
(Section 5)

The major additional contribution of this paper over our
conference paper [43] is that we design another heuristic method
(LSH based de-anonymization in Section 4.4) and presented an
evaluation for it on the two datasets.

2 PRELIMINARIES AND MODELING

We here present needed background on knowledge graph, data
model, attack model, the attacker’s knowledge model, privacy
concepts, and locality-sensitive hashing.

2.1 Network Data

Network data refers to data that has a structure of graph, of
which the most important is social network data. It describes
entities (often people) and the relationships between them. Social
networking sites and instant-messaging programs allow users to
explicitly define such “friend” or “follow” relationships. Making
such data available can be invaluable to social studies and un-
derstand the dynamics of communities. However, the release of
data is severely restrained due to concerns about the privacy of
individuals.
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2.2 Knowledge Graph

A knowledge graph (KG) [21] is a network of all kinds of
entities related to a specific domain or topic. The entities are
not limited to real objects and abstract concepts, but instances
of numbers, datasets and documents. It is a directed graph where
a node represents an entity, a directed link relates one entity to
another, and each link is associated with a predicate that represents
the relationship. Each link together with its two endpoints in this
graph stands for a piece of knowledge.

Knowledge graphs are usually stored in the form of RDF
triples, i.e., (subject, predicate/relation, object), each representing
a link. Note multiple links between two nodes are allowed,
since there could be multiple relations between two entities.
For example, (Tom Cruise, was born in, the USA), (Tom
Cruise, has nationality, the USA). Actually, if the knowledge
graph contains the triple {s,r,0), it can still contain (s’,r,0),
(s,r’,0), (s,r,0") [15]. Formally, a knowledge graph is denoted
as G = (V,€), with a mapping 7 : V — C that maps
an entity (a subject or object) to a category, and a mapping
p : £ — R that maps a link to a relational type. Existing large-
scale knowledge graphs include Freebase, YAGO, Knowledge
Vault, Google Knowledge Graph, DBpedia, etc. They are widely
applied to improving web search and question answering services.
Following Knowledge Vault [15], each link/triple is assigned a
confidence score in our methods, which implies the probability of
this knowledge being true.

2.3 Social Network Data Model

A typical social network dataset is comprised of the struc-
tural/topological data and users’ profiles. In the literature, a social
network is usually represented as a graph where nodes stand for
users and links stand for users’ relations. In this paper, however,
we use a different notation. We model a social network with
a knowledge graph G(V,E), in which V is a set of nodes
corresponding to entities of the network, and & is a set of links
corresponding to relations between the entities. The difference
is that nodes can stand for any type of entities, including users
and their attributes such as genders, locations, numbers, etc.
They are referred to as user nodes VU and attribute nodes V*
respectively. We would use node for short to refer to user node
when there is no ambiguity. Thus, we have V = VY U V4. Links
in the knowledge graph convey a wide variety of information.
Basically they consist of three types: user-to-user links, user-
to-attribute links and attribute-to-attribute links. Accordingly, we
have & = VY U VA U £44. User-to-user links express users’
relations, e.g., (Bob, is colleague, Alice). User-to-attribute links
specify users’ attributes, e.g., (Bob, has gender, male). And
attribute-to-attribute links describe the correlations or some prop-
erties between attributes, e.g., (Doctor, has salary, > 50K).
Given a link/triple e € &, s(e), p(e), o(e) , and c(e) refers to
the subject, predicate, object and confidence score of e. In other
words, a link e is often denoted as (s(e),p(e), o(e), c(e)) while
sometimes c(e) is omitted for simplicity. Since links in the knowl-
edge graph are directed, we assume users in the social network
have one-way relations, such as “follower” (a two-way relation
such as “friends” can be regarded as two one-way relations).

To protect users’ privacy, the data publisher anonymizes a
social network data G with its privacy preservation techniques,
such as perturbation and sanitization on links and nodes. The
published anonymous graph data is modeled by G,(Va, &)
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(anonymized graph), in which every user/node’s identification
information (such as name) is removed, and there might be
attributes generalized and nodes and links added or removed.

2.4 Attack Model

In the scenario of privacy-preserving data publishing, the data
publisher holds a dataset and she can access all the informa-
tion within the dataset, including users’ identities and sensitive
attributes. The data publisher is trusted and will protect users’
privacy before and after publishing the dataset. And she would not
disclose more information to other people or institutions than the
published data.

The attacker has the desire of learning private information of
a specific target or a group of users, or even all the users. She has
access to the published datasets and has the capability of acquiring
information, logical reasoning and computation. In addition, she
might have a variety of background information known as prior
knowledge, which enables her to eliminate some values from the
set of sensitive attribute values and then infer the sensitive value
with high confidence.

2.5 Attacker’s Knowledge Model

We assume that the attacker is able to gather information as
prior knowledge to de-anonymize the published dataset. We define
knowledge formally as follows.

Definition 1 (Knowledge). Knowledge is an awareness and belief
about the probability of a triple ¢ = (s, , 0) being true, where
se€S,0e0,reR.

Knowledge sometimes can be denoted as the decrease in
the entropy about the event distribution. The attacker’s back-
ground knowledge can be obtained through multiple manners, e.g.,
data aggregation, data mining, collaborative information systems,
knowledge/data brokers, etc. The prior knowledge includes the
following types.

o Common sense, e.g., a male can never have uterine cancer.

e Statistical information, that is, relevant demographic infor-
mation previously released by governmental or research in-
stitutions.

e Personal information, i.e., information about a specific user
learnt from her webpage and real life.

o Network structural information e.g., number of neighbors,
ego network.

Following Zhou et al. [61], we further classify structural
information that an attacker may possess into five categories.

e Node degrees. Here degree might have different meanings in
different scenarios.

o Link relations, e.g., Bob follows Alice in Twitter, or Bob is a
colleague of Alice.

e Neighborhood subgraphs, including the neighborhood users
and relations of some target individuals. This knowledge may
span multiple networks and include the target’s alter egos in
these networks [36].

o Compromised subgraphs, either planted by the attacker be-
fore the graph is published (called seed attack), or divulged
by a collusion of a few users [39].

o Graph properties, such as closeness, centrality, betweenness,
path length, reachability [18]. Sometimes, the global graph
properties, such as the graph being a power-law graph, can
also be exploited for attacking [24].
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All of these information can be represented in a knowledge
graph (including structural information, which can be seen as
attributes), denoted by G,(Vp, &p) (we call it prior attack graph).
We assume the attacker targets at only a small number n, of
users from the global set V, of users in the anonymized graph
G, that is, n, << n, (n, represents total node number in
G,). This is more realistic than many prior works that assume
VZZ,] = VY. Sometimes the attacker has imperfect and incomplete
knowledge of properties or relations of users (called probabilistic
knowledge, as the opposite of certain knowledge), so a confidence
score (denoted as c) is attached to every link in the knowledge
graph to express such uncertainty. Certain knowledge has a score
of 1 or 0, meaning definitely true or definitely false.

In reality, a piece of knowledge may depend on another, either
of the same or of a different type. Following [15], the knowledge
correlations are classified into three types.

e Mutual exclusion. Given a subject s and a predicate r,
for objects 01 (o2 = 0, we have c({s,7,01 V 02)) =
c({s,r,01)) + c({s,7,02)), and ¢({s,r,01 [ 02)) = 0. For
example, (Jackie, has gender, female) and (Jackie, has
gender, male) are mutually exclusive, i.e., they cannot be
true simultaneously.

e Inclusion. Given a subject s and a predicate r, for objects
01 C 09, we have ¢((s,7,01)) < c({s,r,02)). For example,
(Jackie, lives in, New York) is included by (Jackie, lives
in, the USA).

e Soft correlation. For instance, the fact {(Jackie, has occupa-
tion, waitress) implies that there is little possibility she has
a yearly salary of over 100K dollars.

These correlations are very critical to the inference process of
the attack. How the attack exploits them to make inference over
users’ attributes will be discussed later.

When the dataset is published, the attacker utilizes her prior
attack graph and the ability of reasoning and computation to make
inference on some facts, which can be either deterministic or
probabilistic. Therefore, the attacker’s knowledge graph would be
updated while she is making inference. Links could be added or
deleted, and their weights may increase or decrease. The final
knowledge graph the attacker has after the reasoning process is
denoted as Gy (posterior attack graph).

2.6 Privacy Disclosure

Privacy disclosure can be either deterministic or probabilistic.
If the attacker has a large variation between the prior and posterior
beliefs (which can also be quantified as the entropy), we call it a
successful attack, that is, the target’s privacy is disclosed. Privacy
disclosure can be further classified into attribute disclosure and
relation disclosure. Attribute disclosure means sensitive attribute
of a given target is inferred by the attacker. The disclosed attribute
is sensitive, at least in the viewpoint of the target. Similarly,
relation disclosure refers to the situation where the attacker learns
the secret relation between two targets. Note identity disclosure
from a published dataset itself can hardly be deemed as loss
of privacy, but it can result in attribute disclosure or relation
disclosure indirectly.

2.7 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) maps elements to the same
value with a high probability if they are close to each other
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and different value otherwise. The space of hash values is much
smaller than the space of elements, so LSH is often used to reduce
the dimension of high-dimensional data or group data into buckets.
LSH can be implemented using error correction codes [13], [17],
bit sampling [20], random projection [9], stable distributions [14],
and MinHash [30]. Different LSH schemes apply to different data
sets. In one of our de-anonymization algorithms, we group users
into buckets using LSH so that similar users are more likely in the
same bucket than dissimilar users are. As a result, mapping space
is greatly reduced by comparing a user to other users in the same
bucket only instead of all the users in the network.

MinHash based LSH scheme [30] would be adopted for one
of our cases. Minhash was first introduced by Andrei Broder [8]
for quickly estimating the Jaccard similarity of two sets. A set of
elements is stored in the form of a membership vector. The length
of the vector |¥| equals the size of the element space. Each bit
value (1 or 0) represents whether an element is contained in the
set. In our case, the set of a user’s attributes is transformed to
a membership vector where bits corresponding to her attributes
are set to 1. Given a random permutation 7 over [1,2,-- -, |7]],
the MinHash signature of ¢’ for this 7 is the index of the first
bit whose value is 1 when all bits are visited in the order of
«. Different MinHash signatures of ¢’ are generated for different
permutations. Suppose for each vector we have b x r MinHash
signatures generated with the same permutations, they are divided
into b bands containing r signatures each. There is a hash function
that hashes the 7 signatures to a bucket; the bucketing is done
separately for different band. Similar vectors are very likely to
produce the same MinHash signatures and thus hashed to the same
bucket in a band. Two vectors are considered as a candidate pair
as long as they are hashed to the same bucket in at least one band.
Given two vectors with Jaccard similarity s, the probability that
they become a candidate pair in this scheme is 1 — (1 — s™)®. This
function has the form of an S-curve. Pairs with greater s are very
likely to become candidates while those with smaller s are very
unlikely to be candidate pairs. Thus LSH is implemented with
MinHash.

3 KNOWLEDGE GRAPH BASED ATTACK ARCHI-
TECTURE OVERVIEW

The privacy attack process typically contains the follow-
ing steps. A social network data is anonymized using various
anonymization techniques (e.g., ID removal, data perturbation),
and then published. The attacker will first construct the prior
attack graph, then apply de-anonymization and privacy inference
techniques to infer private attributes, and finally measure privacy
disclosure to recover some successfully attacked subgraph.

3.1 Prior Attack Graph Construction

For de-anonymization, the attacker first construct a prior attack
graph, consisting of following three steps: 1) Initialize with certain
knowledge, 2) Add probabilistic knowledge, and 3) Complement
according to correlations. More sophisticated methods like knowl-
edge graph identification [42] can be used in the construction.
The attacker now possesses two graphs, the published anonymous
data graph G, and a prior attack graph Gp,. She will take them
as inputs, and construct a posterior attack graph as the output.
This process can be divided into two parts: de-anonymization and
privacy inference.
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Fig. 2: An example of de-anonymization and privacy inference: The
publisher removes users’ identifiers and adds/removes nodes/links in the
original graph G, then publishes the anonymized graph G,. The attacker
models her prior knowledge by G, and use it to attack G, and learn users’
privacy. Finally,her posterior knowledge is modeled by G.

3.2 De-anonymization

In the de-anonymization step, the attacker tries to map the
target users in G, to nodes in G, which is mainly based on the
similarity of their attributes and relations. After the mapping, the
attributes attached with the anonymous node is also linked to the
target user. The updated prior attack graph is denoted as G;).

Fig. 2 gives a simple example. Suppose Bob is the target
of the attack in the social network. We assume all the links
here have confidence score of 1. The original network data (Fig.
2(a)) is published after anonymization and perturbations (Fig.
2(b)). Users’ names are removed and replaced with pseudonyms.
Their ages are generalized. The publisher might add/delete a few
links randomly, e.g., adding a link from Cindy to Alice. These
perturbations are supposed to be subtle such that the utility of
the network data is well preserved. The attacker constructs a
knowledge graph around Bob as the prior attack graph (Fig. 2(c)).
It is known to the attacker that Bob has three followers and one
following, and that Bob has an age of over 50. Then the attacker
maps Bob in the prior attack graph to a node in the published
graph. He first finds that node B and D in Fig. 2(b) both have 3
followers and one following, which is in accordance with Bob, so
B and D are added to the candidate set. Then the attacker notices
that B has an age of 60 while D is 40. Obviously, the former is
consistent with the knowledge that Bob is older than 50. Thus,
Bob is mapped to node B. Accordingly, the attributes attached
with node B in the published graph is also linked to Bob. In this
case, the attacker knows that Bob is a doctor, so the link (Bob,
has occupation, doctor) is added to the graph (Fig. 2(d)).

3.3 Privacy Inference

In this step, the attacker complements and updates the attack
graph by inferring private attributes and relations that are not
contained in (G, or cannot be learned from (,. The intrinsic
knowledge correlations play a key role in privacy inference. As
depicted in Fig. 2(c), the attacker knows a doctor has a salary of
over 50K dollars. The attacker has known that Bob is a doctor at
the de-anonymization step, so she infers that Bob has a salary of
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“>50K” and adds the corresponding link (the purple dashed line
in Fig. 2(d)) to her knowledge graph.

3.4 Privacy Disclosure Determination

After inferring Bob’s private attributes and relations, the at-
tacker finally has a new knowledge graph, i.e., posterior attack
graph G,. Graph G, evolves from G, but there could be new
links or nodes added and confidence scores of links could be
increased or decreased, compared with the latter. The variations
of original and current confidence scores can be regarded as a
metric of the extent of privacy leakage. As for a newly added link,
it does not exist in Gp, which means the attacker has no idea
whether it is true or false. So it is reasonable to set its original
confidence score to follow the common distribution known by
everyone (such as uniform distribution over all possible values, or
normal distribution, or power-law distribution). Thus, we define
privacy leakage as follows.

Definition 2 (Privacy disclosure). Given a piece of knowl-
edge/triple ¢ which is considered to be sensitive to the user,
and t has a score of ¢,(t) in G}, and a score of ¢4(t) in Gy,
the privacy t is considered to be disclosed if and only if it
satisfies

6(cp(t), cq(t)) > €(t), (1)

where § is the distance function. If there are multiple sensitive
attributes, the Kullback-Leibler divergence can be used to measure
the distance of prior and posterior distributions. The threshold
€ can be set to different values for different triple ¢ (different
subjects, predicate, or objects).

4 KNOWLEDGE GRAPH BASED DE-
ANONYMIZATION & PRIVACY INFERENCE METHODS

In this section, we present the de-anonymization and privacy
inference methods based on the knowledge graph model. We
will first introduce how de-anonymization is transformed into a
bipartite matching problem and then design two heuristics for
bipartite construction. Finally we would describe how to perform
privacy inference on the knowledge graph.

4.1 Node Similarity

Before presenting the de-anonymization algorithm, we first
define the node similarity measurement. The similarity S(%, j)
between two user nodes ¢, j includes the attribute similarity and
the structural similarity scores.

Attribute Similarity: For computing the attribute similarity
score Sa(p,a) between two nodes, p € VY ,a € VY, we use the
following attribute set.

Attribute set: For p € Vzl,] (resp., Vg ), its attribute set
A, is a set of tuples of predicates and objects. For example,
the attribute set of Bob in Fig. 2(b) is {(has age, 60),(has
occupation,doctor)}.

In a knowledge graph, each user node s has some links
connecting to attribute nodes. Given a node p € G, (and a set
of emergent links F(p) = {(p,r,0) | r € R,0 € O} with
confidence score c¢ for each triple (s, p,0)), and a node a € G,
(with a set of links E(a) = {(a,r,0) | r € R,0 € O), the
attribute similarity between p and a is denoted by the probability
Pr(E(a) | E(p)) that these links are observed with the prior
knowledge. In this work, we use I(r, 0) to denote whether the link
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(p,r,0) from G), appeared in G, as (a,r,0). Then the attribute
similarity of p and a is defined as,

Sa(p,a) = Pr(E(a)|E(p))
= H c((p;r,0)) - H (1 —c((p,7,0)). @

I(r,0)=1 I(r,0)=0

Notice that here we assume that the link that appeared with
100% confidence in the G, will also appear in G. If this
is not the case (i.e., the link disappears due to the anonymiz-
ing operation), we use cg to denote the probability that this
event happens. Then the attribute similarity can be modified as
Sap,a) = Hl(r,o):l c((p,r,0)) 'HI(T,O):O(l_C(@a 7, 0))co).
For numerical attributes (such as age), the difference of its values
in G, and G, over the maximum difference can be used as its
weight.

Structural Similarity: In addition to attribute similarity, struc-
tural similarity between two nodes is also considered. We use the
following information to compute the structural similarity score
Sr(p,a) between p € V) and a € VY.

Inbound neighborhood Z,,: For a user node u € V;J (resp.,
VY, its inbound neighborhood Z, is a set of predicates of
relational links that are incident to w.

Outbound neighborhood O,: This is a set of predicates of
relational links that are emergent from a node wu.

{-hop neighborhood: We may also consider the general £-hop
neighborhood of a node p and its induced subgraph. When ¢ = 1,
it is simply ego neighborhood.

The structural similarity between two nodes is

SR(p7 CL) = sz'L(pa a) +w050(paa’> +wésf(p7 (l) 3)

where w; + w, + wp = 1, w;, wo,wy € [0,1], and S;(p, a),
So(p,a), and S¢(p,a) denote the inbound similarity, outbound
similarity, and £-hop neighborhood similarity. We compute these

similarities by Jaccard index, e.g., Si(p,a) = J(I,,Z,) =
|ZpNZa|
IZpUZa"

Node Similarity: Then we assign weights to S4, Sg so the

node similarity S(p, a) of p and a is computed as
S(p, a) = wASA(p7 a) + (1 —’U)A)SR(]),(I). (€]

Therefore, the similarity S is a normalized function.

4.2 De-anonymization Formulation

We assume all the users in the attacker’s prior knowledge have
corresponding nodes in G, that it, Vg - Vg (Overlapped graphs
will be discussed in Section 6). Suppose 7 : Vg — VY is an
injective mapping from users in G/, to anonymized user nodes in
G. The goal of de-anonymization is to find such a mapping 7
that maximizes the similarity between G, and G,

argmax Sim(G,, G,), 35)

where Sim is a function that measures the similarity between two
graphs G, and G, after their user nodes are matched by a function
7. We compute Sim by summing up the similarity scores of their
matched user nodes.

Sim(Gy, Ga) = D S(i. ), (6)
(i,5)em

To transform the problem, we introduce a complete weighted
bipartite graph Gp(VY + VY, Ep). in which a weight S(4, j) is

6

assigned to each link e;; € £p. Any link is a possible candidate
match. Thus the de-anonymization problem can be reduced to the
maximum weighted bipartite matching problem (also known as
the assignment problem), which can be further reduced to the
minimum cost maximum flow problem, and thus can be solved
by many algorithms [4], [5]. We implement an algorithm based
on [2], which has O(nmf) time complexity and O(n?) space
complexity. Herein, n = n, + n, is node number in G, m is
link number, and f is the maximal flow value (f = O(n,,) in our
case). Notice that for real world social networks n, can be very
large, even up to millions.

There are three challenges in implementing such method:

1) Constructing this complete bipartite graph has large space
and time complexity,

2) Finding the maximum weighted matching also has a large
time and space complexity for large scale network data,

3) Selecting proper features from the attributes and structural
similarity, and assign a proper weight for every feature has
a large impact on the de-anonymization performance. This
sometimes is more of an art than science.

Graph G has O(m) = O(n,n,) links in total. To reduce
mapping space and complexity, we can decrease m by keeping
only links with largest weights, without computing similarities
of all pairs of nodes. Specifically, each user in VZEJ is linked to
top k candidate nodes in VV. Here k is a predefined parameter
that balances accuracy and complexity. Since we have assumed
np < ng, there will be many isolated nodes in VY that can
be removed. Accordingly, n, is reduced to O(kn,), and thus
time and space complexity of solving the assignment problem
is lowered to O(k?n3) and O(k?nZ), respectively. However,
now the major complexity lies in building such a light-weighted
bipartite graph GG . We will present two heuristic techniques of
bipartite construction on the basis of the top-k strategy.

4.3 BFS Based Bipartite Construction

In Algorithm 1 we build a light-weighted bipartite graph with
the top-k strategy by traversing Gp,. The intuition is that if two
nodes match, their neighbors are also very likely to match. An
example is given in Fig. 3. Mapping space is thus lowered by
utilizing users’ connections. We choose to perform breadth first
search (BFS) on G/, which induces less error accumulation than
DFS. In the beginning, G has no links. The algorithm selects
an outstanding initial node from G/, such that it can be mapped
with high confidence, which is very critical as it has an impact on
mapping other connected nodes. This initial node can be picked
with different ways. In our approach, we randomly pick a node,
compute the similarities between it and all nodes in GG, and check
if there is a distinct disparity. If the range of the similarities is
greater than a threshold 7,,;,, then pick this node as the initial
node. As an alternative, we can compute the structure/attribute
score of a node (such as the degree of the node, the size of the ego
network, the size of ¢-hop network, the set of attributes of a node),
and then sort nodes in decreasing order of the structure/attribute
score. We match the node in G, with nodes G, having the largest
score similarities.

Then BFS is performed in G}, where link directions are
ignored temporarily. Before mapping each node p € Gy, the
algorithm checks whether p has a predecessor/father node (de-
noted as pr(p)) in the BFS. If so, it searches the neighbors of
pr(p)’s candidate matches, to get the top k similar candidates
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Fig. 3: An example of BFS-based bipartite construction: The intuition is
that if two nodes match, their neighbors are also very likely to match. Suppose
we already know the light green nodes in G, are candidate matches for the
dark green node in G, and suppose the dark green node is the predecessor of
the dark red node. To find the candidates for the dark green node in G, we
just need to search among the neighbors of the two light green nodes in G,.

Bucket 1 . . . .
Bucket 2
U hash
"> Bucket 3 . .
User

User buckets

Fig. 4: An example of LSH-based bipartite construction: Step 1: Group
nodes of GG into buckets using LSH such that similar nodes are grouped in
the same bucket. The buckets is shown on the right. Step 2: Given any user in
Gp, use the same hash function to convert the user’s profile to an index, then
find the corresponding bucket (row in the table). The nodes in this bucket are
candidates of the user’s match.

for p. (Luckily, the expected number of neighbors of a node is
far less than n, for real social networks e.g., the average number
of Facebook friends of a person is about 330 [1].) Otherwise,
it searches all the nodes in v}{ , which is a relatively rare case.
Among these top-k potential matching candidates, we remove
the candidates whose similarity with the node p is less than a
threshold S,,,;,,. Then k links connecting p with its candidates are
added to G p and the similarities are attached as weights. When
BFS is done, all the nodes in G, are mapped. After removing
isolated nodes in VaU , we finish constructing the bipartite graph.
Compared to building a complete bipartite which costs O(nqn,)
time, the top-k strategy has much less overhead to build the
reduced bipartite.

Obviously, the choice of parameter k, the weight threshold
Smin, and the weight range threshold 7,,;, will have a large
impact on the accuracy of the final mapping result. The smaller
Smin 1s (or the larger k is), the more candidates a user would
have, which results in greater search space for mapping the user’s
successors. On the other hand, large S.,;, (and small k) could
result in a reduced bipartite graph missing some links from the
real maximum weighted matching. Later on our experiment will
evaluate the impact of these parameters. We found that typically
k = 10 is enough for achieving high accuracy with small
complexity.

4.4 LSH Based Bipartite Construction

The top-k candidate selection method presented above might
have the problem of error accumulation, because the selection

Algorithm 1 BFS Based Bipartite Graph Construction

Require: Anonymized graph G, prior attack graph G, parameter k.
Ensure: A bipartite graph G .
1: Define £g = |, build a bipartite graph G'g (VZI,] +VV €R).
2: Pick an initial node pg € Vg .
3: Perform BFS in G, starting from po (treat G, as undirected graph).
4: for each p € Vzl)j , following the order of BFS do

5 if p has a predecessor pr(p) then

6 Define N = 0.

7: for each a € Cp,.(;) do

8: for each neighbor n of a do

9: if The relation of n, a is the same as that of p, pr(p) then
10: N =N U{n}.

11: for each n € N do

12: Calculate S(p, n).

13: Add top k similar nodes to C;, as p’s candidates.
14:  else

15: for each a € VY do

16: Calculate S(p, a).

17: Add top k similar nodes in AV to Cp.

18:  for eacha € Cp, do

19: Attach weight S(p, a) t0 epa, E = Ep U {epa }-

20: Remove isolated nodes in a € V.
21: return Gpg.

of candidate matches of a user is dependent on the selection for
her predecessor. Now we design a new method to avoid error
accumulation by finding candidates for each user independently.
The key idea is to group users in GG, into buckets for indexing.
Please see Fig. 4 for an example. Below are some notations used in
the algorithm. Hereafter, we assume there is only one type of user-
to-user relation for simplicity. The formula can be easily extended
to the case where there are multiple types of relations like friends,
colleagues and classmates.

Node profile: For a user node a € Vfl] (resp., Vg ), its
profile A, is a set of tuples of predicates and objects. For
example, the profile of Bob in Fig. 2(b) is {(has age, 60),(has
occupation,doctor)}.

Neighborhood profile of a node a refers to the set of profiles of
a’s neighbors, which is split into two sets, inbound neighborhood
profile P = {A,|v € Z,}, and outbound neighborhood profile
PO = {A,lv e O,}.

User buckets H is a 2D array of which each row is a bucket
of nodes whose node profiles are similar. Specifically, for each
node a we compute the hash value (A, ) of its node profile using
a LSH function h, and then insert the node to the bucket H i)
(the index 7 equals h(A,)). The implementation of LSH, i.e. the
selection of h, is highly dependently on the properties of the data
to be bucked. Thanks to the property of LSH, nodes with more
similar profiles are more likely to be grouped the same bucket.
We will search for possible candidates of each user within the
corresponding bucket, which is much more efficient than searching
the whole node set.

Neighborhood similarity (denoted as S‘) measures the simi-
larity of two nodes according to the likeness of their 1-hop neigh-
borhood, specifically the profiles of their inbound and outbound
neighbors. For p € VZE] anda € Vg , their neighborhood similarity
is defined as

A 1

S(p,a) = 5(

PINnPLl+1 |P?NP2I+1
PL+1 PO+ 1
Considering the attacker has incomplete knowledge, missing

neighbors is acceptable when comparing p’s neighbors with a’s
but redundant neighbors are not allowed. This is why we choose

) (D
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this asymmetric definition instead of Jaccard Index. To make sure
the denominator is non-zero, we add 1 to it and to the numerator
so it is still normalized.

Algorithm 2 LSH Based Bipartite Graph Construction

Require: Anonymized graph G, prior attack graph G, parameter k.
Ensure: A bipartite graph G .
1: Define £ = 0, build a bipartite graph GB(VE +VV €R).
2: Create a 2D array H of neighborhood fingerprint.
3: for each a € VY do
4 Calculate h(Ag).
5 Add a to the array H[h(Aq)].
6: for each p € Vg do
7.
8
9

N =0.
Calculate h(Ap).
for each a in the array H[h(.Ap)] do

10: Calculate neighborhood similarity S (p,a)
11: if S(p,a) > smin then
12: N =NU{a}.

13:  Add top k similar nodes in N to Cp, as p’s candidates.
14:  for each a € C, do

15: Attach weight S(p, a) to €pa- Ep =EpU{epa}-
16: Remove isolated nodes in a € V.

17: return Gpg.

As shown in Algorithm 2, the construction of the user buckets
H is straigthforward. For each node a in GG, calculate its hash
value h(A,), then add it to the bucket H[h(A,)]. The time
complexity is O(VY + EVA). After the construction, we then
find top-k candidates for user nodes in G, by referring to H.
For each node p in G, calculate its hash value h(A,). The
bucket H[h(A,)] stores nodes who have similar node profiles
with p. Then we determine whether those nodes also have similar
neighborhood profiles by calculating their neighborhood similarity
S(p,a), for any a € H[h(Ap)]. If the similarity is above a pre-
specified threshold s,,;y,, it suggests that node a is very likely
to be a match of p. We pick top & most similar nodes to be the
candidates of p. The rest steps are the same as in BFS based
bipartite construction.

This algorithm matches users according to their neighbor-
hood similarity and independently without error accumulation
so hopefully it would achieve better accuracy compared to the
BFS base method. Meanwhile, it has greater time complexity.
The main overhead lies in the computation of neighborhood
similarities where each attribute of each neighbor will be accessed
for comparison. In this case, k has little influence on the time
complexity of bipartite construction since searching for candidates
of a user does not depend on the candidates of her predecessor any
more.

4.5 Path Ranking Based Privacy Inference

We now present out methods for inferring users’ private
attributes (including relations between users), which is regarded as
link prediction in the knowledge graph. One way to infer/predict
new links is to utilize the path ranking algorithm (PRA) proposed
by Lao et al. [29], which was designed to complement existing
knowledge bases. Given any two nodes s,0 in the knowledge
graph (G; in our case), PRA finds a set of paths Py, Ps, ..., P,
connecting s and o, which can be interpreted as rules. The
paths are combined by fitting a binary classifier. The probability
distributions of reaching o from s along the paths are used as
features. Based on logistic regression, we can classify whether a
triple (s, r, 0) holds and thus perform the link prediction task.

5 EXPERIMENT EVALUATIONS

We conduct de-anonymization and privacy inference exper-
iments on two real world social network datasets and then we
present a comprehensive evaluation on our methods, which vali-
dates the effectivity of knowledge graphs as a model of attacker’s
prior knowledge.

Dataset | VY| [ VA [ [E77] [ €% 17
Google+ | 107,614 | 15,691 | 13,673,453 | 378,880 | 2,262
Pokec | 306,568 | 576 | 2,822,492 | 1,532,840 | 38

TABLE 2: Statistics of two datasets: the numbers of users, attributes,
user-to-user links, user-to-attribute links, and attribute-to-attribute links. Here,
attribute-to-attribute links are not contained in the original datasets. We
generate them by calculating conditional probabilities between attributes.

5.1 Methodology
5.1.1 Datasets

We simulate our methods on two real world datasets, Google+
and Pokec, both from Stanford Network Analysis Project (SNAP)
[3]. Google+ is a social layer for Google services operated by
Google Inc., and Pokec is the most popular online social network
in Slovakia. They contain rich network data and users’ profiles.
For Google+, meaningless and duplicate user profiles are removed
when we preprocess it; for Pokec, users who have incomplete or
invalid attributes are removed. Table 2 shows the statistics of the
preprocessed datasets. The relations in the two social networks
are oriented, and there is only one type of relation between users:
“follows”. For Pokec, the selected profiles contains 5 attributes:
gender, location, age, height, weight, which are in the form of a
relational table. Profiles in Google+ contain 6 attributes: gender,
institution, job title, last name, place, university, yet they are not
tabular as a user may have multiple values for a single attribute,
such as multiple job titles. The preprocessed datasets are treated
as original graphs G and used as ground truth. The last column of
Table 2 is the number of synthetic attribute-to-attribute links for
each dataset. Those links are generated only for the prior attack
graph G,. They represent the attacker’s knowledge of attribute
correlations, which would be utilized to perform privacy inference.
We will mention how we generate G, later.

5.1.2 Anonymized Graph & Prior Attack Graph Generation

Before performing de-anonymization on the datasets, firstly
we need to anonymize them in order to generate anonymized
graphs G,. Given an original graph G(VY U V4, V0 y gl y
EAA), users’ private data is contained in EYVUEY4, representing
relations and profiles correspondingly. To anonymize G, both
relations and profiles should be perturbed. For the former, we
adopt the sampling method which is commonly used in previous
works [22], [24], [36]. (Previous anonymization approaches are
not suitable for us because most of them [33], [35], [47], [53],
[58] are for undirected graphs while we adopt the directed graph
model. We will have a small evaluation on them later in Table 4.)
Specifically, links in & g U are randomly sampled from EYU with
a sample ratio sr,. All the links’ confidence scores are set to 1.
We also need to perturb users’ profiles. For Pokec, we adopt the
Flash algorithm [27] that achieves K-anonymity (K = 10, use
capital K for disambiguation) to generalize the profiles. However,
the Google+ profiles are not in the form of relational data because
a user could have multiple values for a single attribute like job
titles and some attributes have various possible values. Traditional
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data perturbation algorithms do not apply to such kind of data, and
it is challenging to design a new fancy approach to anonymize it.
Thus, we perturb it by suppressing a small portion of the attributes,
ie. EY4 is sampled from Y4 for Google+. In addition, user
IDs in VY are removed and substituted with pseudonyms. It is
assumed that V4 stays the same when G, is generated, and
EA = gA4 = ),

Meanwhile, we generate the prior attack graph G, for the
attacker. Since it is very hard to predict what knowledge a real
attacker would collect, we simulate it by sampling and calculating
statistics of the original graph. First, we select a few users from
VY to VI[)] by some means (stated later) as the attacker’s target
users. Then Sg v, SIEJ 4 are randomly sampled from only the
relations and profiles relevant to these users, at the sample ratio
srp. Likewise, VZ’;‘ = V4 is assumed. Besides, links for 51;4‘4 can
be synthesized by calculating conditional probabilities between
attributes (Pr(c | b) = Pr(b,c)/Pr(b) = n(b,c)/n(b), for
any b,c € V4). Attribute-to-attribute links are used for privacy
inference only. We select weight as the target attribute to be
inferred for Pokec users, job title for Google+ users. As a result,
we only take into account the links from any of other attributes
to the target attribute. As shown in Table 2, we have much more
attribute-to-attribute links for Google+ because it has a wide range
of attribute values for institution, last name, place, and university.

Given a user sampling ratio usr, three sampling methods are
used to select target users Vg .

1) RS: Randomly sample from VY at the ratio usr;

2) EG: Sample n,, users within an ego network of a user (n, =
Ng X UST);

3) RW: Sample n,, users from VY based on random walk (ny, =
ng X usr), which reflects how people know friends.

Later on, we will evaluate the influence of different user
sampling methods on the attack performance.

5.2 Evaluation on De-anonymization

To evaluate our de-anonymization algorithm, we use accuracy
(ratio of correct matches) and run time as metrics to measure
utility and complexity.

5.2.1 BFS Based Bipartite Construction

There are several important parameters that have an influence
on the performance. Their default parameter settings are listed in
Table 3, and RW is chosen as the default user sampling method
as it is most practical. The first three parameters usr, srq, ST)p
controls how noisy the generated graphs G,,G, are, ie. the
difficulty level of de-anonymizing users in G, from users in
G. The rest four k, 7'pin, Smin, W4 tune the de-anonymization
algorithm (see Section 4.3 for details). Since experiments on
Google+ and Pokec are alike, we focus on Google+ unless there
is a difference.

Fig. 5 effectively shows how the settings of k, S, influence
de-anonymization accuracy and time complexity. As depicted in
Fig. 5(a), increasing k (recall that we match a user with the top
k users from G, in building the bipartite graph) can improve
accuracy when k£ < 10 but has a minor effect when & > 10.
This is because accuracy is bounded by sample ratio srg, sT)p
(see details in Fig. 8). Yet run time constantly increases with the
growing k (Fig. 5(b)). Therefore, we choose k£ = 10 as default.
It is revealed in Fig. 5(c),5(d) that s,,;, has negative correlations
with accuracy and run time so it balances the tradeoff between
them, which is in accordance with our intuition.

9
Parameter | Meaning | Default
usr User sampling rate for G), 0.005
STq Edge sampling rate for G, 0.8
ST Edge sampling rate for G, 0.8
k For choosing top k similar candidates 10
T'min Minimum range of similarity scores, 0.8
for picking initial node
Smin Minimum similarity score required for 0.5
candidates
wA Weight of attribute similarity 0.5

TABLE 3: Parameters and default settings

Fig. 6 indicates that run time is in proportion to usr but
accuracy almost keeps stable, because usr decides the number
of target users to be matched, but does not affect the mapping
algorithm. Fig. 7 shows that the de-anonymization method has
best accuracy when 0.4 < w4 < 0.9. Recall w4, 1 — w4 are the
weights assigned to the attribute similarity and relation similarity
of two nodes. Thus, it is indicated that both of the two features play
an important role in measuring node similarity. But this figure also
implies that structural features help less compared with attribute
features. This is because nodes of G, is a small subset of those of
G, which could results in great structural discrepencies between
their nodes.

Recall srg, srp, are the link sampling ratios of G 4, G, which
reflect information fidelity after anonymization and the amount of
the attacker’s prior knowledge. They intrinsically determine the
de-anonymizability of the published graph. As shown in Fig. 8(a),
our de-anonymization method has larger accuracy when sr,, srp
are closer to 1. As shown in Fig. 8(b), sr, has a more dominant
effect on run time than sr,, which can be explained by n,, < ng.
To be practical, we set sr, = sr, = 0.8.

After adjusting these parameters, we make a comparison of
three different user sampling methods (Fig. 9). In the left side is
run time of 3 phrases of de-anonymization and total time, and the
right side compares the methods in terms of accuracy. It is shown
that RS has the largest complexity and the worst accuracy, RW
has the best accuracy, and EG is the most efficient method. We
can also learn from this figure that the main time complexity lies
in loading dataset and building bipartite graph.

Anonymization approach to be cracked [ Accuracy
Randomly sample edges (ratio= 0.8) 0.531
Randomly switch edges [58] (ratio= 0.2) 0.429
k-Degree Anonymity [33] (kK = 50) 0.382
Bounded ¢-means clustering [53] (¢ = 2000) 0.347
Differential privacy [47] (e = 1) 0.259
Random walk [35] (#steps=10, max.retry=10) 0.222

TABLE 4: Accuracy of de-anonymization against existing graph
anonymization approaches (BFS, Google+): Users’ relations are perturbed
by these approaches while their profiles are still perturbed by sampling as
before. Source codes of these methods are from the SecGraph project by Ji et
al. [23]. Google+ is treated as undirected graph when it is anonymized.

We also use some of the existing anonymization methods to
generate G, and then perform our de-anonymization algorithm.
The results are given in Table 4. We can see that better anonymiza-
tion is harder to crack. Tests on Pokec have similar results, except
that the accuracy is lower (usually < 0.3). This is because 10-
anonymity was applied to the original profiles we tested, so it is
much harder to differentiate users by attribute features. In addition,
the average degree is only 18 which indicates that the graph
contains poor structural information. In such case, using more
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Fig. 7: The impact of w4 on de-anonymization accuracy and run
time (BFS, Google+): It suggests that both attribute similarity and structural
similarity are important to determining if two nodes match.

refined structure-based features will greatly improve the accuracy,
such as £-hop neighborhood, closeness centrality, top-k reference
distance, landmark reference distance [24].

5.2.2 LSH Based Bipartite Construction

Since the selection of LSH function depends on the properties
of the data to be grouped, we choose different LSH implementa-
tion for the two data sets. For Pokec, minhashing based method
[30] is adopted which groups users into buckets on the basis of
Jaccard similarity. However, this method has poor performance in
grouping users in Google+ data set, for users’ attributes have such
a large diversity that most users have very small Jaccard similarity
scores, causing almost all users to be binned into one bucket.

05

00
sr, sty

(a) Accuracy - srq, sTp (b) Run time - s74, s7p

Fig. 8: The impact of srq, sTp on de-anonymization accuracy and run
time (BEFS, Google+): De-anonymization would be more accurate with higher
sampling rates for generating the anonymized graph and prior attack graph.
Besides, sr, has a dominant effect on the run time.

Load Build Match Total

Accuracy

Fig. 9: The impact of user sampling methods on de-anonymization
accuracy and run time (BFS, Google+): Randomly sampling target users
results in the worst complexity and accuracy of de-anonymization. Random-
walk sampled users are most prone to de-anonymization because it has the
best accuracy, but sampling from an ego network can make the algorithm run
efficiently most.

Instead, we group users in Google+ by their attributes which can
also be treated as an implementation of LSH. For example, users
in the same place are grouped in the same bucket. Last name,
place and job title each are selected for grouping because they
are more distinguishable than other attributes are. The parameter
Smin 18 set to 0.9 for Pokec and 0.3 for Google+ respectively. The
values are chosen according to the similarity among users under
the neighborhood similarity metric in the data sets.
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Fig. 10: The impact of k on de-anonymization accuracy and run time
(LSH, Pokec): This figure shows that the LSH based method achieves higher
accuracy and has greater time complexity than the BFS based method.

Fig. 10 shows that the LSH based method achieves higher
accuracy than the BFS based for Pokec data set, though it
causes much greater time complexity, which is still acceptable
for de-anonymization attack. The reasons of higher accuracy are
twofold. The BFS based bipartite construction approach avoids
error accumulation by mapping users independently, and it utilizes
the more precise neighborhood similarity metric to compare users.
Fig. 10(a) reveals that greater k leads to worse accuracy, while it
has an opposite effect for the BFS case. Since the neighborhood
similarity is very precise, a user and her very match are very
likely to have a higher similarity score than that of her and another
candidate, so choosing top-2 candidates is enough to include the
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right match. On the contrary, larger k£ would hardly increase the
accuracy but make the bipartite matching more confusing with
the interferential edges. Thus, greater k£ does not bring higher
accuracy as in the BFS method. In Fig. 10(b), run time hardly
changes with k£ when the bipartite construction is based on LSH,
while it increases proportionally with growing & for the BFS based
method. This is because searching for candidates of a user does
not depend on the candidates of her predecessor in the LSH based
method.
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Fig. 11: The impact of k on de-anonymization accuracy (LSH, Google+):
This figure shows that the LSH based method achieves lower accuracy than
the BFS based. Choosing 2 attributes (“LSH2”: last name and place) for user
binning is the best for LSH. The results are better when we measure de-
anonymization accuracy within users whose attributes are not null (denoted as
“LSH,”™).
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Fig. 12: The impact of k on de-anonymization run time (LSH, Google+):
When the bipartite construction is based on LSH, run time does not change
with &, while it increases proportionally with growing k for the BFS case. The
more attributes are used for user binning, the higher run time is induced.

The results for Google+ are depicted in Figs. 11 and 12. Three
cases of user bucketing are considered, indicated by subscripts 1,
2, 3. “LSH;” refers to using last name for bucketing, “LSHy” for
last name and place, and “LLSH3” for last name, place and job title.
Fig. 11 shows that the LSH based method does not achieve better
de-anonymization accuracy, which is due to two reasons. For one
thing, over 40% users in G, have null values for all of last name,
place and job title due to our lossy sampling, which directly results
in failure to group them and find their similar counterparts. For
another thing, grouping users by their attributes might not be a
perfect LSH scheme for the Google+ data set. After removing
users whose attributes are null and re-computing the accuracy
(referred to as partial accuracy and indicated by a subscript ‘p’),
the results are much better, and even better than the BFS base
method when k& < 5. It is shown in Fig. 12 that k has little
influence on the time complexity for the LSH method and using
more attributes for bucketing incurs higher computation overhead.
According to Figs. 11 and 12, selecting last name and place for
bucketing has the highest accuracy (LSH»), the second highest
partial accuracy (LSHj,) and little run time. On the contrary,
selecting three attributes results in much higher time complexity
but not better accuracy. Selecting only last name has the highest
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partial accuracy (LSH;,) and the lowest overhead. However, it
only applies to a small portion of users as the last names of
most users in the data set are missing, which explains why it
has the lowest accuracy (LSH;) . We can therefore conclude that
selecting last name and place is the best out of the three cases for
user bucketing in Google+. In addition, like in the test on Pokec,
greater k leads to worse accuracy until k£ = 20.

5.3 Evaluation on Privacy Inference

To validate our privacy inference method, we run PRA algo-
rithm on the two datasets. Since the PRA code can easily take
up upwards of 20GB of RAM for large scale graphs, we did our
simulation on a sampled graph (3000 users for Pokec, 540 users
for Google+). The profiles and relations are stored in the form of
triples. For Pokec, the inference is performed separately without
the involvement of de-anonymization. We randomly sample some
triples as the training set at a sample ratio, which simulates the
attacker’s incomplete knowledge, and the rest triples act as ground
truth. We also generate a few links for 51;4‘4 (attribute correlations)
and add them to the train set. Given a query (s,7) (subject and
relation), PRA outputs a waiting list of candidates for objects.
Mean reciprocal rank (MRR), a criterion used in information
retrieval, is adopted to measure the inference efficacy. We also
modify precision@k and re-defined a metric hit@k. It refers to
the ratio of queries who have a hit in the top k candidates,
which better applies to our scenario since most relations in Pokec
are functional. For Google+, we conduct privacy inference based
on G;, (the updated prior attack graph after de-anonymization).
Performance is evaluated by varying the link sampling ratio sr.

For either dataset, an attributive and a relational link types are
selected as secrecy. As shown in Fig. 13, our method performs
better than random guess (RG) and is proportional to sample
ratio (or sr), which indicates that the more prior knowledge the
attacker possesses, the stronger inference ability she has. And the
running time of our testing is only a few seconds. However, the
performance on Google+ is undesirable because of two reasons: 1)
G; contains false information due to imperfect de-anonymization
conducted on the data set; 2) PRA relies strongly on topological
information of the knowledge graph, but our graph sampling might
have caused damage to that. However, the results are still much
better than random guess, which verifies the feasibility of inferring
privacy using knowledge graphs.

6 DiscussioN

Overlapped Graphs: So far we assumed that every user in G,
has a match in G, that is, Vg - Vg . But in reality, it is possible
that a user in the attacker’s prior knowledge does not exist in the
original dataset, and thus not in G,. In this case, Algorithm 1
can be adjusted slightly. Suppose 7 : Vz()] — VYU {L}isan
“injective” mapping from users in G, to anonymized user nodes
in G, plus a no-match indicator L ( there can be multiple users
in G, mapped to L). When constructing the bipartite graph G g,
n,, fake nodes are added as candidates such that each node in
Vg is linked to a different fake node with a weight wg. One user
would be mapped to a fake node if the weights of her links to
other candidates are lower than wy, i.e., it is very likely she has no
match in G,. The key here is to select a proper weight threshold
wo.

Reducing Complexity: Our extensive evaluations show that
the major time cost lies in the construction of the bipartite graph
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Fig. 13: MRR and Hit@10 of privacy inference on Google+ and Pokec: We infer users’ weights, job titles, and following. It is suggested that our method
have better performance than random guess and is in proportion to the samping ratio.

G, i.e., the set of links and the corresponding link weights. We
proposed to use only top-k possible matching nodes for each node
in the prior attack graph. The challenge is how to efficiently find
the k candidates for each of nodes in G, among 1, nodes from G,
without incurring large amount of computation. Besides, there is a
linear time 1/2-approximation algorithm for maximum weighted
matching for general graphs [40], which can be utilized to further
reduce the matching time.

Extending to Any RDF Graph: This paper models social
network data using RDF triples and designs algorithms based
on that. In fact, those formulations and algorithms also apply to
any kind of RDF graph. Another work of us [46] presents how
the attackers can use RDF graph to model their knowledge and
perform privacy inference.

7 RELATED WORK

The last decade witnesses large quantities of research works
on privacy issues in social network data publishing. Various
attack and protection techniques have been proposed. Most of
them employ privacy models derived from k-anonymity [50],
by assuming the attacker’s possession of specific limited prior
knowledge. Unfortunately, their anonymization techniques are
vulnerable to attackers with stronger background knowledge than
what is assumed. For instance, k-degree anonymity [33] was pro-
posed to prevent the attacker, who knows the number of neighbors
of an individual, from identifying her from the published graph
based on vertex degree. However, it cannot defend against com-
munity re-identification [52]. Similar anonymization techniques
proposed in succession include k-neighborhood anonymity [54],
[60] (against 1-neighborhood attack and 1*-neighborhood attack,
respectively), k-candidate anonymity [19], k-automorphism [62],
k-isomorphism [10], k-structural diversity [52] (derived from [-
diversity [34]), kz—degree anonymity [51], and ¢-closeness [11].
Unfortunately, most of these proposals lack a complete or realistic
attacker model. Zhou and Pei [60] showed that a person can be
identified if the attacker has knowledge of the person’s neighbors
and their attributes. Zou et al. [62] pointed out that the attacker
may exploit multiple types of structural information (not just 1-
hop neighborhood) to de-anonymize a person, so they proposed k-
automorphism. By contrast, we assume the attacker aims at more
than one victims, and she may know any profile and structural in-
formation about them. In addition, there are some anonymization
techniques based on clustering/aggregation [7], [18], [32], [53],
differential privacy [41], [44], [45], [47], [55], [59], and random
walk [35]. However, they either are vulnerable to existing attacks
or do not preserve data utility well.

Other previous methods focus on graph mapping attacks (also
called structure-based de-anonymization), in which the attacker
attempts to de-anonymize/re-identify users in the network, with

only structural/toplogical information as background knowledge.
Most of these attacks are seed-based, including [6], [12], [25],
[28], [36], [37], [39], [49], [57]. They usually consist of two
phases: seed identification and mapping propagation. In other
words, a few specific users are identified somehow as seeds, and
mapping users and nodes is iteratively conducted from the seed
users based on structural characteristics of the data graph. There
are also works that do not need seed users, such as [24], [38],
which are based on Bayesian model and optimization respectively.
These works do not consider the scenarios where some of the
attacker’s background knowledge might be probabilistic. They
attack the network data based on solely structural information,
and their goal is to de-anonymize nodes in the network. On the
contrary, our scheme utilizes both node profiles and topological
information to infer users’ private attributes that are not contained
in the anonymized network data.

There are also some methods that try to construct an at-
tacker model. Hay et al. [18] classified adversary knowledge
into three variants: vertex refinement queries, subgraph queries,
and hub fingerprint queries. However, they either do not model
the real capabilities of the attacker or express little adversarial
knowledge. Narayanan et al. [36] assumed that the attacker has
an auxiliary user network with both probabilistic aggregates and
individual information, yet this model cannot capture some types
of background information, like uncertain user relations. Chen
et al. [31] considered three types of prior knowledge: positive
associations, negative associations, and same-value families, but
did not include relationships between individuals. Li ef al. [32]
modeled background knowledge as a graph with semantic edges
and correlation edges. The graph is created by the data publisher
based on her assumptions on the capability of the attacker, and it
is used for designing anonymization methods. In contrast, our goal
is to perform de-anonymization and the prior knowledge graph is
created by the attacker.

8 CONCLUSION

In this work, we build a realistic and comprehensive model of
the attacker’s background information with knowledge graphs, for
better expressing attack process and quantifying privacy disclo-
sure, which would provide a foundation for a generic anonymiza-
tion technique. Our evaluations on two real-life social network
datasets demonstrate its powerfulness and efficiency. There are a
number of challenges left for future research. The first is to design
an efficient method for constructing the bipartite graph for de-
anonymization purpose. Second, we will include more features in
matching nodes from the prior knowledge graph and nodes from
the anonymized graph. The third is to subtly utilize knowledge
correlations and probability distributions in the privacy inference
process.
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