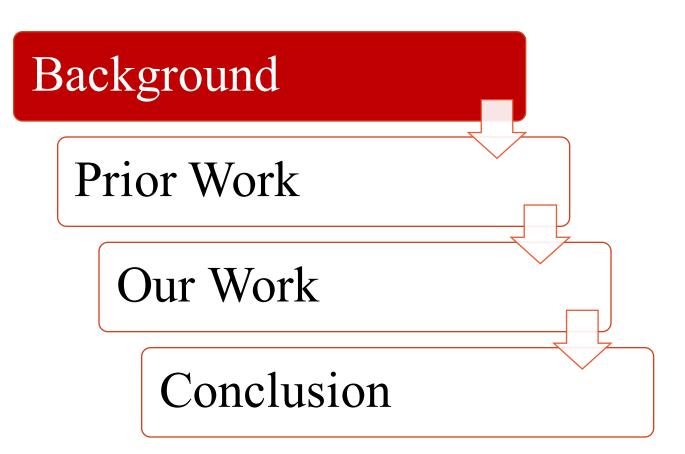


De-anonymizing Social Networks and Inferring Private Attributes Using Knowledge Graphs

Jianwei Qian Illinois Tech Chunhong Zhang BUPT Xiang-Yang Li USTC, Illinois Tech Linlin Chen Illinois Tech

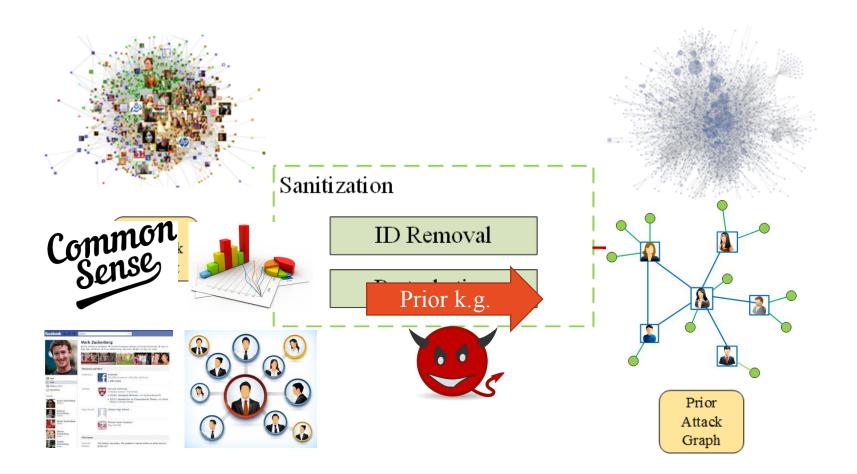
Outline

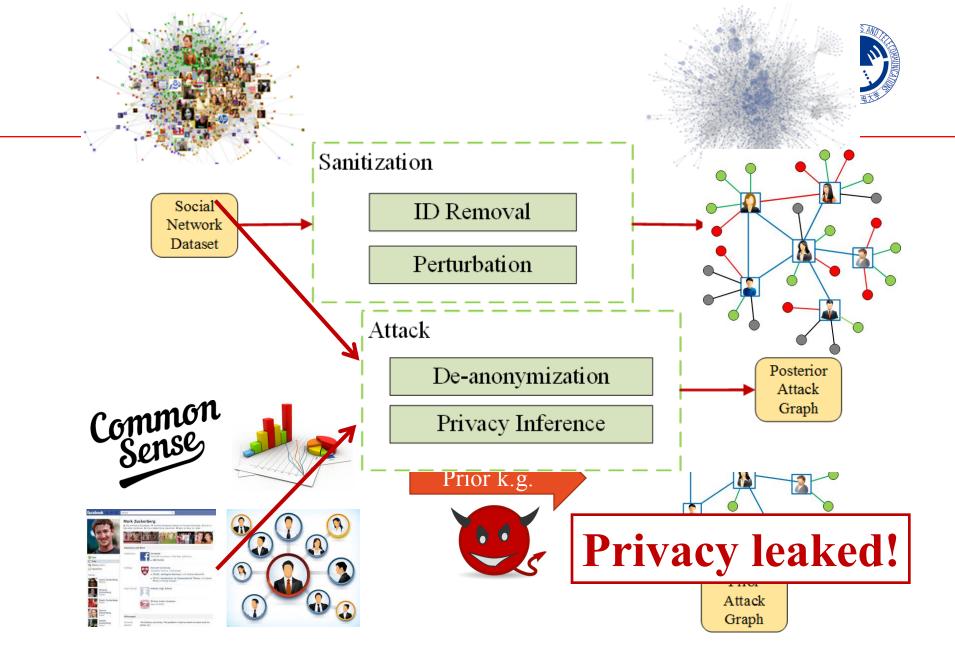


Background

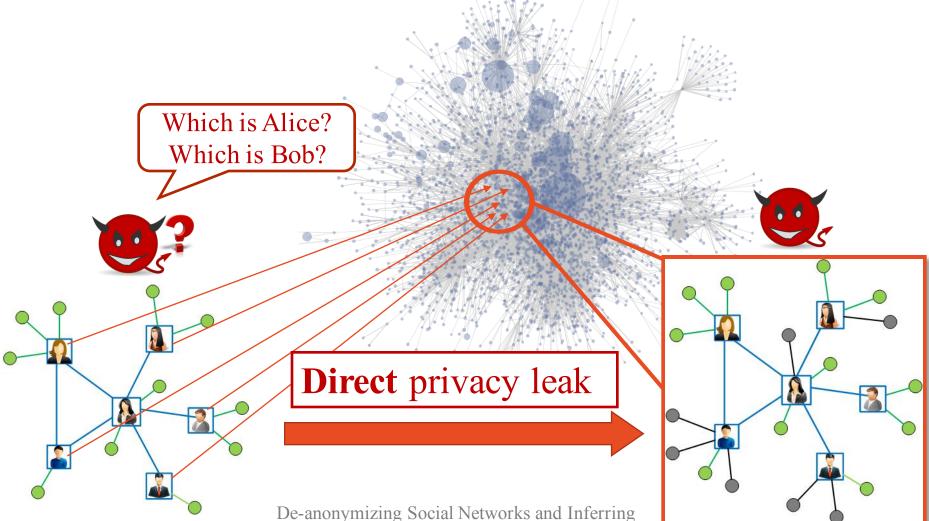
- Tons of social network data
- Released to third-parties for research and business
- Though user IDs removed, attackers with prior knowledge can de-anonymize them. → privacy leak

Attacking Process





Attack Stage 1 De-Anonymization



Private Attributes Using Knowledge Graphs

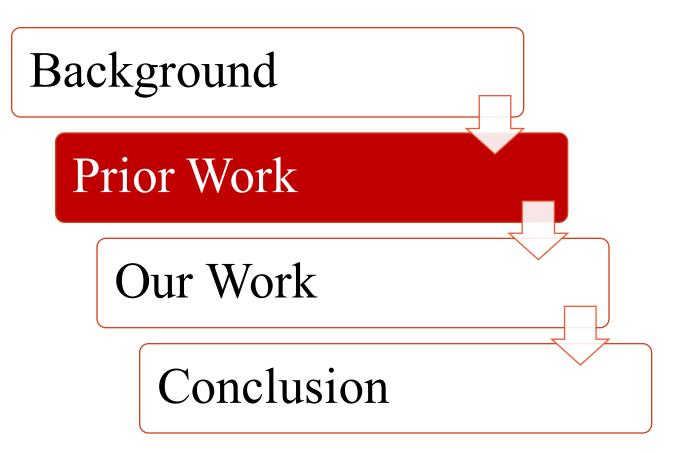
Attack Stage 2 Privacy Inference

- Correlations between attributes/users
 - Higher education => higher salary
 - Colleagues=> same company
 - Common hobbies => friends
- Infer new info that is not published **Indirect** privacy leak

What Do We Want to Do?

To understand How privacy is leaked to the attacker

Outline



Prior Work

De-anonymize one user

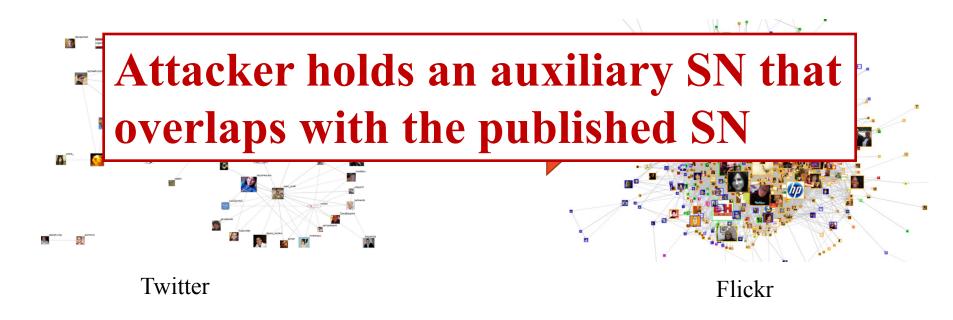
• Community re-identification [SDM'11]

• k-structural diversity

Prior Work

De-anonymize all the users

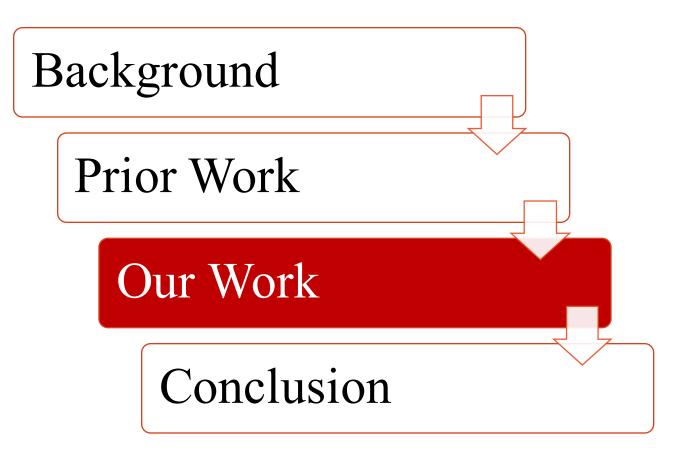
- Graph mapping based de-anonymization [WWW'07, S&P'09, CCS'12, COSN'13, CCS'14, NDSS'15]



Limitations

- Assume attacker has specific prior knowledge
 - We assume diverse and probabilistic knowledge
- Focus on de-anonymization only. How attacker infers privacy afterwards is barely discussed
 - We consider it as 2nd attacking step!

Outline



Goals

- To construct a comprehensive and realistic model of the attacker's knowledge
- To use this model to depict how privacy is leaked.

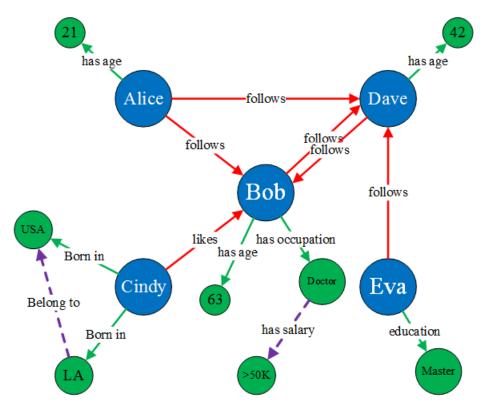
- Hard to build such an expressive model, given that the attacker has various prior knowledge
- Hard to simulate attacking process, since the attacker has various techniques

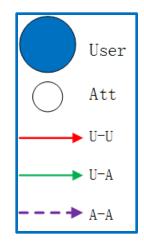
Solution

Use knowledge graph to model attacker's knowledge

Knowledge Graph

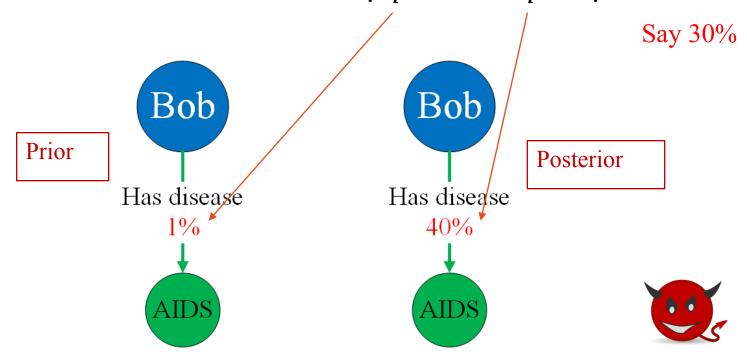
- Knowledge => directed edge
- Each edge has a confidence score



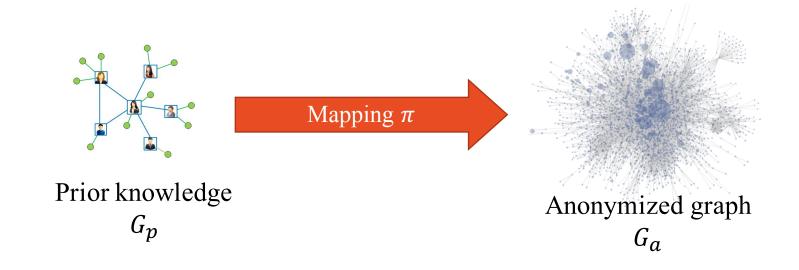


What's Privacy?

- Every edge is privacy
- Privacy is leaked when $|c_p(e) c_q(e)| > \theta(e)$



De-Anonymization



 $\operatorname{argmax} Sim_{\pi}(G_p, G_a)$

$$Sim_{\pi}(G_{p}, G_{a}) = \sum_{(i,j)\in\pi} S(i,j),$$

S is node similarity function

Node Similarity

- Attribute Similarity
 - Use Jaccard index to compare attribute sets
- Relation similarity
 - Inbound neighborhood
 - outbound neighborhood
 - *l*-hop neighborhood

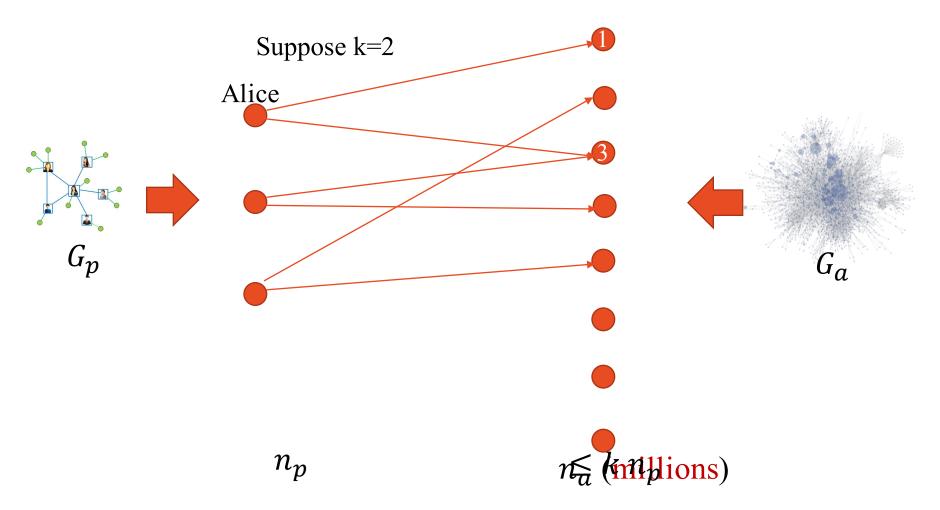
 $S_R(i,j) = w_i S_i(i,j) + w_o S_o(i,j) + w_l S_l(i,j)$

$S(i,j) = w_A S_A(i,j) + (1 - w_A) S_R(i,j)$

Problem Transformation

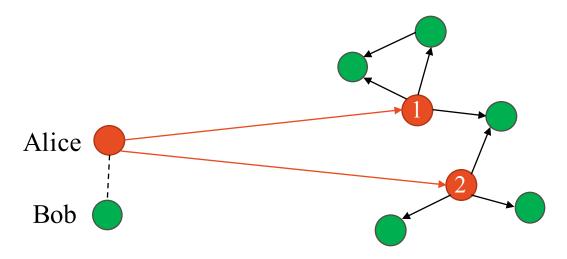
Mapping => Max weighted bipartite matching Naïve method: G_{p} G_a Huge complexity! n_p n_a (millions)

Top-k Strategy



How to Choose Top-k Candidates?

- Intuition
 - If two nodes match, their neighbors are also very likely to match.



• Perform BFS on G_p

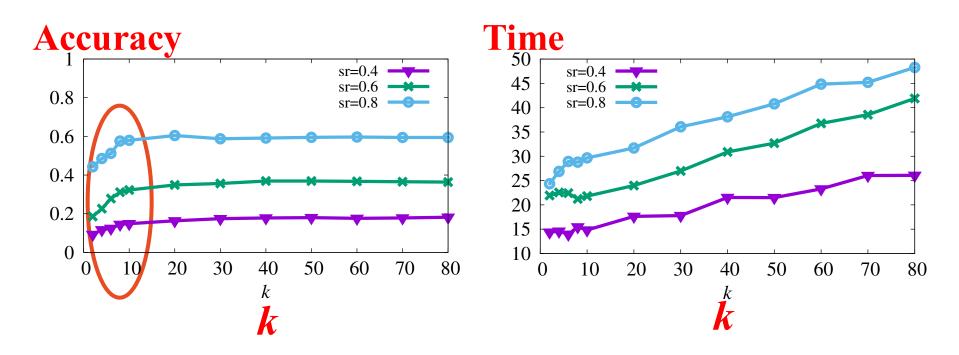
Complexity Analysis

		Space		
	Building Bipartite	Finding Matching	Space	
Naïve method	$n_p n_a$	$O\left(\left(n_p+n_a\right)n_p^2n_a\right)$	$O\left(\left(n_p+n_a\right)^2\right)$	
Top- <i>k</i> strategy	$\ll n_p n_a$	$O(k^2 n_p^3)$	$O(k^2 n_p^2)$	

Complexity greatly reduced!

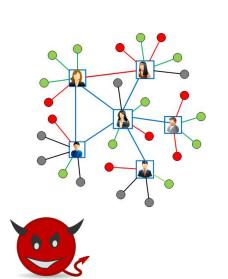
Tradeoff

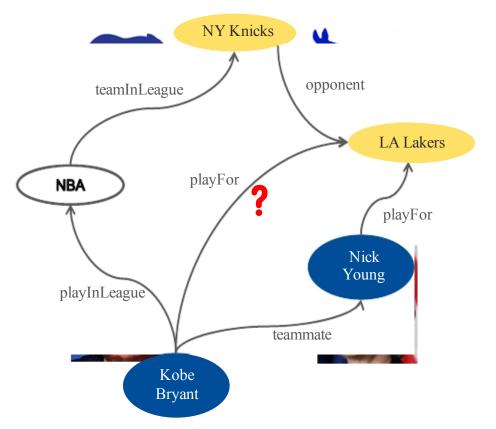
- *k* balances accuracy and complexity
- k = 10 is enough to achieve high accuracy



Privacy inference

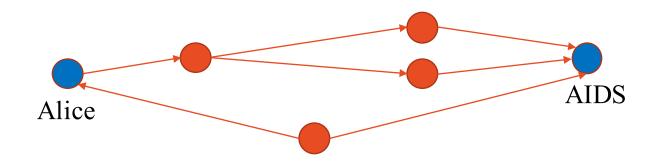
Predict new edges in knowledge graph





Path Ranking Algorithm

• Proposed by Ni Lao et al. in 2011 for a different topic



- Correlations => "rules" => paths
- Logistic regression

Experiments

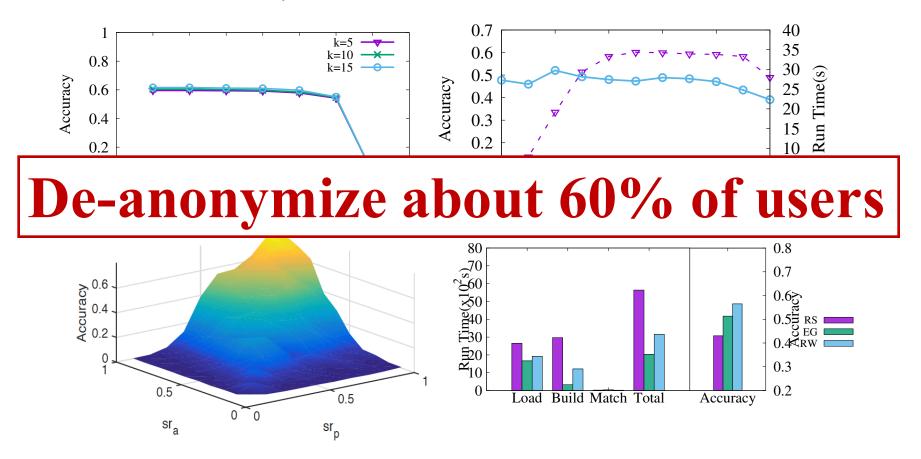
- Datasets
 - Google+, Pokec

Dataset	$ \mathcal{V}^U $	$ \mathcal{V}^A $	$ \mathcal{E}^{UU} $	$ \mathcal{E}^{UA} $	$ \mathcal{E}_p^{AA} $
Google+	107,614	15,691	13,673,453	378,880	2,262
Pokec	306,568	576	2,822,492	1,532,840	38

- Steps
 - Generate G_a
 - Generate G_p
 - Run the algorithms

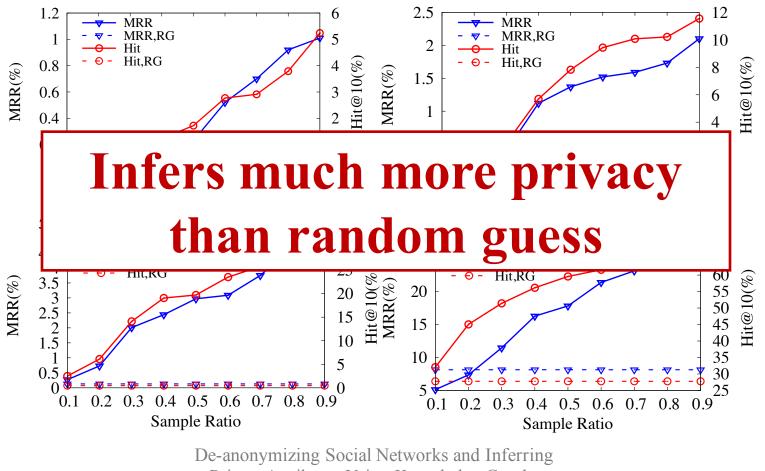
De-Anonymization Results

Metrics: accuracy, run time



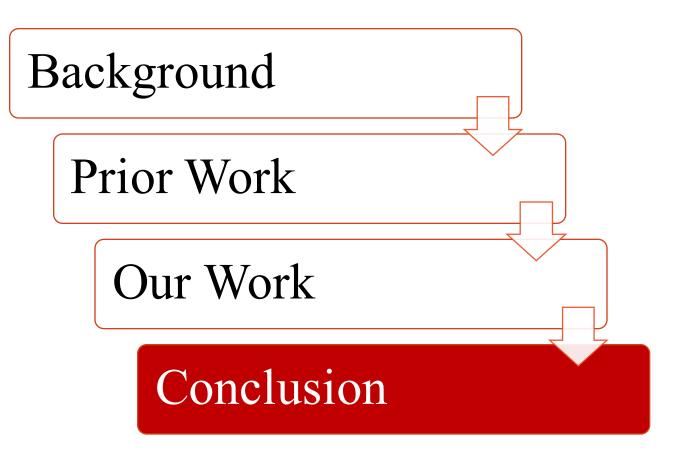
Privacy Inference Results

Metrics: hit@k, MRR (Mean reciprocal rank)



Private Attributes Using Knowledge Graphs

Outline



Conclusion

We have

- Applied knowledge graphs to model the attacker's prior knowledge
- Studied the attack process: de-anonymization & privacy inference
- Designed methods to perform attack
- Done simulations and evaluations on two real world social networks

Future work

- Effective construction of the bipartite for large scale social networks
- Impact of adversarial knowledge on deanonymizability
- Fine-grained privacy inference on the knowledge graph

Thank you!

Jianwei Qian jqian15@hawk.iit.edu <u>https://sites.google.com/site/jianweiqianshomepage</u>