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Background

• Tons of social network data
• Released to third-parties for research and business
• Though user IDs removed, attackers with prior 

knowledge can de-anonymize them. → privacy leak
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Attacking Process
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Prior k.g.



Prior k.g.

Privacy leaked!
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Attack,Stage,1
De#Anonymization
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Which is Alice?
Which is Bob?

Direct privacy leak



Attack,Stage,2
Privacy Inference

• Correlations between attributes/users
– Higher education => higher salary
– Colleagues=> same company
– Common hobbies => friends

• Infer new info that is not published
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Indirect privacy leak



What,Do,We,Want,to,Do?

To understand
How privacy is leaked to the attacker
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Prior,Work
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◦ Degree attack [SIGMOD’08]

◦ 1-neighborhood attack [INFOCOM’13]

◦ 1*-neighborhood attack [ICDE’08]

◦ Friendship attack [KDD’11]

◦ Community re-identification 
[SDM’11]

◦ k-degree anonymity 
◦ 1-neighborhood anonymity 
◦ 1*-neighborhood anonymity 
◦ "#-degree anonymity

◦ k-structural diversity

De-anonymize one user

Fight

Never ending!

Assume specific prior knowledge!



Prior,Work
De-anonymize all the users

– Graph mapping based de-anonymization
[WWW’07, S&P’09, CCS’12, COSN’13, CCS’14, NDSS’15]
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Twitter Flickr

Mapping

Attacker holds an auxiliary SN that 
overlaps with the published SN



Limitations

• Assume attacker has specific prior knowledge
– We assume diverse and probabilistic knowledge

• Focus on de-anonymization only. How attacker infers
privacy afterwards is barely discussed
– We consider it as 2nd attacking step!
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Goals

• To construct a comprehensive and realistic model of 
the attacker’s knowledge 

• To use this model to depict how privacy is leaked. 
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Challenges

• Hard to build such an expressive model, given that 
the attacker has various prior knowledge

• Hard to simulate attacking process, since the 
attacker has various techniques
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Solution

Use knowledge graph to model attacker’s 
knowledge
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Knowledge Graph
• Knowledge => directed edge
• Each edge has a confidence score

De-anonymizing Social Networks and Inferring 
Private Attributes Using Knowledge Graphs 17



What’s Privacy?

• Every edge is privacy
• Privacy is leaked when $% e − $((*) > -(*)
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Prior Posterior

Say 30%



De#Anonymization

argmax34567(8%,8:)

4567 8%,8: = ∑ 4(5, =)(>,?)∈7 , 
S is node similarity function
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Prior knowledge
8%

Anonymized graph
8:

Mapping A



Node Similarity

• Attribute Similarity
– Use Jaccard index to compare attribute sets

• Relation similarity
– Inbound neighborhood 
– outbound neighborhood 
– l-hop neighborhood

4B 5, = = C>4> 5, = + CE4E 5, = + CF4F 5, =

4 5, = = CG4G 5, = + 1 − CG 4B 5, =
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Problem Transformation
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8:

3I: (millions)

……

……

Mapping => Max weighted bipartite matching

I%

8%

Huge complexity!

Naïve3method:



3I: (millions)

Top#k Strategy
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≤ "3I%

Suppose k=2

8:

3

1

I%

8%

Alice



How,to,Choose,
Top#k Candidates?

• Intuition
– If two nodes match, their neighbors are also very likely to match. 

• Perform BFS on 8%
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Bob
2

1
Alice



Complexity Analysis

Time
Space

Building Bipartite Finding Matching

Naïve
method I%I: [ I% + I: I%#I: [ I% + I:

#

Top-k
strategy ≪ I%I: [ "#I%] [ "#I%#
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Complexity3greatly reduced!



Tradeoff
• " balances accuracy and complexity
• " = 10 is enough to achieve high accuracy
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Privacy inference
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Predict new edges in knowledge graph

Kobe
Bryant

Nick
Young

teammate

playInLeague

teamInLeague opponent

playFor

LA Lakers

playFor

NY Knicks

�



Path,Ranking Algorithm
• Proposed by Ni Lao et al. in 2011 for a different topic

• Correlations => “rules” => paths
• Logistic regression
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Alice AIDS



Experiments
• Datasets

– Google+, Pokec

• Steps
– Generate 8:
– Generate 8%
– Run the algorithms
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De#Anonymization
Results
Metrics: accuracy, run time
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Privacy Inference
Results
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Metrics: hit@k, MRR (Mean reciprocal rank )
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Conclusion

We have
• Applied knowledge graphs to model the attacker’s 

prior knowledge
• Studied the attack process: de-anonymization & 

privacy inference
• Designed methods to perform attack
• Done simulations and evaluations on two real 

world social networks
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Future work
• Effective construction of the bipartite for large scale 

social networks

• Impact of adversarial knowledge on de-
anonymizability

• Fine-grained privacy inference on the knowledge 
graph
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Thank you!
Jianwei Qian

jqian15@hawk.iit.edu
https://sites.google.com/site/jianweiqianshomepage
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