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Background

(M Tube i 88 W facebook
L,Technoratl
ding & reddit .
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m -.del.icio.us @lnte’;eéi .

 Tons of social network data

» Released to third-parties for research and business

* Though user IDs removed, attackers with prior
knowledge can de-anonymize them. — privacy leak
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Attacking Process
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Attack Stage 1

De-Anonymization

Which is Alice? | =
Which is Bob?

Direct privacy leak
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Attack Stage 2
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Privacy Inference

* (Correlations between attributes/users

— Higher education => higher salary
— Colleagues=> same company

— Common hobbies => friends

* Infer new info that 1s not published
Indirect privacy leak
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A
What Do We Want to Do? ,

To understand

How privacy 1s leaked to the attacker
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Prior Work ) &

De-anonymize one user

q Fight

o Degree attack [SIG) Never ending! ¢ anonymity

o 1 nelghborhood attack [INFOCOM 13] o 1-neighborhood anonymity

q

~

Assume specific prior knowledge!

o Community re-identification o k-structural diversity
[SDM’11]
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Prior Work

De-anonymize all the users

— Graph mapping based de-anonymization
[WWW’07, S&P’09, CCS’12, COSN’13, CCS’14, NDSS’15]
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Limitations

* Assume attacker has specific prior knowledge
— We assume diverse and probabilistic knowledge

* Focus on de-anonymization only. How attacker infers
privacy afterwards 1s barely discussed

— We consider it as 2™ attacking step!
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Goals

* To construct a comprehensive and realistic model of
the attacker’s knowledge

* To use this model to depict how privacy 1s leaked.
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Challenges

» Hard to build such an expressive model, given that
the attacker has various prior knowledge

« Hard to simulate attacking process, since the
attacker has various techniques
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Solution

Use knowledge graph to model attacker’s
knowledge
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Knowledge Graph

Ny 4

« Knowledge => directed edge
« Each edge has a confidence score

@,

hasage hasage

follows

follow

follows follows

likes has occupation
Born in hasage
\
\
Belong to

/
\\ Born in has salary education

i e <
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What's Privacy?

* Every edge 1s privacy
 Privacy is leaked when ‘cp (e) — ¢ (e)‘ > 6(e)

Say 30%
Prior | | Posterior
Has diseaseé Has disegse
1% 40%
De-anonymizing Social Networks and Inferring 18
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De-Anonymization \
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Prior knowledge

Anonymized graph
Gp

Gq
argmax Simg(Gp, G,)

Simn(Gp; Ga) — Z(i,j)ETE S(l'])a
S 1s node similarity function
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Node Similarity

» Attribute Similarity

— Use Jaccard index to compare attribute sets

« Relation similarity

— Inbound neighborhood
— outbound neighborhood
— [-hop neighborhood

SrR(,J) = wiSi(6,)) + weSo (i, j) + wiSi(i,))

S(l']) — WASA(i'j) + (1 o WA)SR(lr])
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Mapping => Max weighted bipartite matching
Naive method:

o

Huge complexity!
"o

My n, (millions)
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Top-k Strategy

Suppose k=2
Alice

Np nf\l%mﬂions)
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Top-k Candidates? / &

e Intuition

— If two nodes match, their neighbors are also very likely to match.

Alice

o9

S,
Q

@

e Perform BFS on Gp
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Complexity Analysis

[ ——

Space
Building Bipartite Finding Matching

Nai 2
meatl}:,:d nyNg 0 ((np + na)nzz,na) 0) ((np + 1) )
Top-k

strafegy K Myl 0(k*n3 0(k*nj

Complexity greatly reduced!
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Tradeoff \ /

e k balances accuracy and complexity

e k = 10 1s enough to achieve high accuracy
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Privacy inference

Predict new edges in knowledge graph

- a NY Knicks W

opponent

teamInLeague

LA Lakers

playFor

playlnLeague

teammate
| O
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ﬁ..
Path Ranking Algorithm

* Proposed by Ni Lao ef al. in 2011 for a different topic

Alice AIDS

e Correlations => “rules” => paths
* Logistic regression
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Experiments

\

Ny 4

* Datasets
— Google+, Pokec
Dataset VY| Z 1EYY| £V 4 E54
Google+ | 107,614 | 15,691 | 13,673,453 | 378,880 | 2,262
Pokec | 306,568 | 576 | 2,822,492 | 1,532,840 | 38
e Steps
— Generate G,
— Generate Gy,
— Run the algorithms

De-anonymizing Social Networks and Inferring
Private Attributes Using Knowledge Graphs
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De-Anonymization ﬁ”f €
Results |

Metrics: accuracy, run time

1 : : : : : v 0.7 - - - - 40
08 I k=10 —%— | 0.6 A duh JES JEL R 35

k=15 0.5 (M7 30

0.6 1 ' 04 | X 3 gg
i | i v 1

0.4 0.3 ,, | 15

02 ] 0.2 1 110

Accuracy

Accuracy
Run Time(s)

De-anonymize about 60% of users

80 0.8
07 107
.06 60 |
8 04 3350 L b 0.6§'
3 | 9&40* ’0.5§RS—
<02, 30 st —
0. m&o :
1 1 10t 103
05 05 0 Load Build Match Total Accuracy 0.2
0 o0
sra Srp
De-anonymizing Social Networks and Inferring 79

Private Attributes Using Knowledge Graphs




Privacy Inference ﬁ

Ny 4

Results

Metrics: hit@k, MRR (Mean reciprocal rank)
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Conclusion ~

We have

» Applied knowledge graphs to model the attacker’s
prior knowledge

» Studied the attack process: de-anonymization &
privacy inference

* Designed methods to perform attack

 Done simulations and evaluations on two real
world social networks

De-anonymizing Social Networks and Inferring
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Future work \

« Effective construction of the bipartite for large scale
social networks

* Impact of adversarial knowledge on de-
anonymizability

* Fine-grained privacy inference on the knowledge
graph

De-anonymizing Social Networks and Inferring
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Thank you!

Jianwei Q1an
jqianlS@hawk.iit.edu
https://sites.google.com/site/j1anweiqianshomepage

De-anonymizing Social Networks and Inferring
Private Attributes Using Knowledge Graphs

34



