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Abstract—Social network data is widely shared, transferred
and published for research purposes and business interests, but
it has raised much concern on users’ privacy. Even though
users’ identity information is always removed, attackers can
still de-anonymize users with the help of auxiliary information.
To protect against de-anonymization attack, various privacy
protection techniques for social networks have been proposed.
However, most existing approaches assume specific and restrict
network structure as background knowledge and ignore semantic
level prior belief of attackers, which are not always realistic
in practice and do not apply to arbitrary privacy scenarios.
Moreover, the privacy inference attack in the presence of se-
mantic background knowledge is barely investigated. To address
these shortcomings, in this work, we introduce knowledge graphs
to explicitly express arbitrary prior belief of the attacker for
any individual user. The processes of de-anonymization and
privacy inference are accordingly formulated based on knowledge
graphs. Our experiment on data of real social networks shows
that knowledge graphs can strengthen de-anonymization and
inference attacks, and thus increase the risk of privacy disclosure.
This suggests the validity of knowledge graphs as a general
effective model of attackers’ background knowledge for social
network privacy preservation.

Index Terms—Social network data publishing, attack and
privacy preservation, knowledge graph.

I. INTRODUCTION

Many online social networking sites like Facebook and
Flickr have been generating tons of data every day, including
users’ profiles, relations and personal life details. Social net-
work data can be released to third-parties for various purposes
including targeted advertising, developing new applications,
academic research, and public competition [10], [27], [37],
[43]. However, publishing social network data could also result
in privacy leakage and thus raise great concerns among the
public. Naively removing user IDs before publishing the data
is far from enough to protect users’ privacy [5], [17], [19],
[28].

The privacy issue in network data publishing is attract-
ing increasing attention from researchers and social network
providers [5], [15], [18], [24]. Various privacy attack and pro-
tection techniques have been proposed, including k-anonymity
[39] based techniques (e.g., k-degree anonymity [24]), and
graph mapping based de-anonymization (e.g., [15]). Unfor-
tunately, previous works have three main limitations. First,
most of the prior attacks only focus on de-anonymization (also
referred to as re-identification), that is, mapping a node in the

network with a real person. Yet how the attacker acquires and
infers users’ privacy after de-anonymization was barely dis-
cussed before. Second, previous works have specific assump-
tions about the attacker’s prior knowledge (also referred to as
background information and we will use them interchangeably
hereafter). Some assumes the attacker is weak and only has a
specific type of information, such as node degrees [24]. Others
assume that the attacker possesses a pure topological network
(without user profiles) which overlaps with the published
network data, such as [15]. The attacker is often assumed to
be 100 percent sure of her prior knowledge. Conversely, some,
if not much, of the attacker’s knowledge is probabilistic in the
real world. Third, they typically do not consider the scenario
that the attacker could exploit correlations among attributes
to make inference about users’ sensitive attributes. Actually,
the attacker can not only read users’ attributes directly from
the published data, but also infer some attributes according
to others. Take salary as an example, it is correlated with
multiple attributes including gender, education and occupation,
e.g., working as a doctor strongly implies high salary.

To overcome these limitations, our goal is to construct a
comprehensive and realistic model of the attacker’s knowledge
and use this model to depict the privacy inferring process.
The significance of our work lies in providing a better un-
derstanding of the attacker’s prior knowledge and privacy
inference, demonstrating the effectiveness of our method,
alerting social network providers to privacy leakage risks,
and leaving implications to researchers for designing general
privacy protection (e.g., anonymization) techniques.

We are facing three challenges. First, it is hard to build
such an expressive model that covers all of the attacker’s
prior knowledge, given that she may have various knowledge,
varying from node profiles and degrees, to link relations
and neighborhood subgraphs (called structural property), some
of which are even probabilistic. Second, it is difficult to
model the privacy inference steps, since the attacker may
have various capabilities and techniques. She could be either
computationally powerful or weak. She may have knowledge
of some correlations among attributes, which are learned from
information sources or by data mining. She may design her
own algorithms to make inference with her prior knowledge
and computation power. Third, it is challenging to quantify
privacy disclosure. There has been no explicit and unified



definition of privacy yet, let alone privacy disclosure’s quan-
tification.

In this paper, we will model the attacker’s prior knowledge
using knowledge graphs [13]. A confidence score is attached to
each piece of knowledge to reflect the extent of the attacker’s
conviction. Then we use variations of the confidence scores to
inflect the attacker’s privacy inference and to quantify privacy
disclosure. We will illustrate our solution in detail later.

In general, our contributions can be summarized as follows.
1) To the best of our knowledge, we are the first to

apply knowledge graphs to model the attacker’s background
knowledge in social network data publishing. This is shown to
be more realistic and complete than previous attacker models.

2) We utilize this model to depict the privacy inferring
process, i.e., how an attacker de-anonymizes and infers users’
private attributes, which helps to determine and measure
privacy disclosure.

3) We present an experiment of our attack on two real-life
social network datasets. The extensive evaluation shows that
our attack technique is realistic and powerful. For example,
by knowing the perturbated information of 0.5% of the total
users in a social network, the attacker can successfully de-
anonymize over 60% of them in our study, i.e., matching
correctly 60% of the users in the prior knowledge graph to
nodes in the anonymized graph.

The rest of this paper is organized as follows. Section II
presents the preliminary concepts and the models to be used.
We present the attack overview in Section III. In Section IV,
we describe the de-anonymization and privacy inference tech-
nical details. We present our experiment evaluation results
in Section V, discuss some limitations and challenges in
Section VI, review the related work in Section VII, and
conclude the paper in Section VIII.

II. PRELIMINARIES AND MODELING

We here present needed background on knowledge graph,
data model, attack model, the attacker’s knowledge model, and
privacy concepts.
A. Knowledge Graph

A knowledge graph [13] is a network of all kinds of entities
related to a specific domain or topic. The entities are not
limited to real objects and abstract concepts, but instances of
numbers, datasets and documents. It is a directed graph where
a node represents an entity, a directed link relates one entity
to another, and each link is associated with a predicate that
represents the relationship. Each link together with its two
endpoints in this graph stands for a piece of knowledge.

Knowledge graphs are usually stored in the form of RDF
triples, i.e., 〈subject, predicate/relation, object〉, each repre-
senting a link. Note multiple links between two nodes are
allowed, since there could be multiple relations between two
entities. For example, 〈Tom Cruise, was born in, the USA〉,
〈Tom Cruise, has nationality, the USA〉. Actually, if the
knowledge graph contains the triple 〈s, r, o〉, it can still contain
〈s′, r, o〉, 〈s, r′, o〉, 〈s, r, o′〉 [9]. Following Knowledge Vault
[9], each link/triple is assigned a confidence score in our

methods, which implies the probability of this knowledge
being true.
B. Social Network Data Model

A typical social network dataset is comprised of the struc-
tural/topological data and users’ profiles. In the literature, a
social network is usually represented as a graph where nodes
stand for users and links stand for users’ relations. In this
paper, however, we use a different notation. We model a
social network with a knowledge graph G(V, E), in which
V is a set of nodes corresponding to entities of the network,
and E is a set of links corresponding to relations between
the entities. The difference is that nodes can stand for any
type of entities, including users and their attributes such as
genders, locations, numbers, etc. They are referred to as user
nodes VU and attribute nodes VA respectively. Thus, we have
V = VU ∪ VA. Links in the knowledge graph convey a wide
variety of information, which consist of three types: user-
to-user links, user-to-attribute links and attribute-to-attribute
links. Attribute-to-attribute links describe the correlations or
some properties between attributes. Examples are 〈Bob, is
colleague, Alice〉, 〈Bob, has gender, male〉, 〈Doctor, has
salary, > 50K〉. Accordingly, we have E = EUU∪EUA∪EAA.

To protect users’ privacy, the data publisher anonymizes a
social network data G with its privacy preservation techniques,
such as perturbation and sanitization on links and nodes. The
published anonymous graph data is modeled by Ga(Va, Ea)
(anonymized graph), in which every user/node’s identification
information (such as name) is removed, and there might be
attributes generalized and nodes and links added or removed.
C. Attack Model

In the scenario of privacy-preserving data publishing, the
data publisher holds a dataset and she can access all the
information within the dataset, including users’ identities and
sensitive attributes. The data publisher is trusted and will
protect users’ privacy before and after publishing the dataset.
She would not disclose more information to other people or
institutions than the published data.

The attacker has the desire of learning private information
of a specific target or a group of users, or even all the users.
She has access to the published datasets and has the capability
of acquiring information, logical reasoning and computation.
In addition, she might have a variety of background informa-
tion known as prior knowledge, which enables her to eliminate
some values from the set of sensitive attribute values and then
infer the sensitive value with high confidence.
D. Attacker’s Knowledge Model

We assume that the attacker is able to gather information as
prior knowledge to de-anonymize the published dataset. We
define knowledge formally as follows.

Definition 1 (Knowledge): Knowledge is an awareness and
belief about the probability of a triple t = 〈s, r, o〉 being true,
where s ∈ S, o ∈ O, r ∈ R.

Knowledge sometimes can be denoted as the decrease in
the entropy about the event distribution. The attacker’s back-
ground knowledge can be obtained through multiple manners,



e.g., data aggregation, data mining, collaborative information
systems, knowledge/data brokers, etc. The prior knowledge
includes the following types.

• Common sense, e.g., a male can never have uterine cancer.
• Statistical information, that is, relevant demographic in-

formation previously released by governmental or re-
search institutions.

• Personal information, i.e., information about a specific
user learned from her webpage and real life.

• Network structural information e.g., node degrees, link
relations, ego networks.

All of these information can be represented in a knowledge
graph (including structural information, which can be seen
as attributes), denoted by Gp(Vp, Ep) (we call it prior attack
graph). We assume the attacker targets at only a small number
np of users from the global set Va of users in the anonymized
graph Ga, that is, np << na (na represents total node number
in Ga). This is more realistic than many prior works that
assume VUp = VUa . Sometimes the attacker has imperfect
and incomplete knowledge of properties or relations of users
(called probabilistic knowledge, as the opposite of certain
knowledge), so a confidence score (denoted as c) is attached to
every link in the knowledge graph to express such uncertainty.
Certain knowledge has a score of 1 or 0, meaning definitely
true or definitely false.

In reality, a piece of knowledge may depend on another,
either of the same or of a different type. Following [9], the
knowledge correlations are classified into three types.

• Mutual exclusion. Given a subject s and a predicate r,
for objects o1

⋂
o2 = ∅, we have c(〈s, r, o1 ∨ o2〉) =

c(〈s, r, o1〉)+c(〈s, r, o2〉), and c(〈s, r, o1
⋂
o2〉) = 0. For

example, 〈Jackie, has gender, female〉 and 〈Jackie, has
gender, male〉 are mutually exclusive, i.e., they cannot
be true simultaneously.

• Inclusion. Given a subject s and a predicate r, for objects
o1 ⊆ o2, we have c(〈s, r, o1〉) ≤ c(〈s, r, o2〉). For
example, 〈Jackie, lives in, New York〉 is included by
〈Jackie, lives in, the USA〉.

• Soft correlation. For instance, the fact 〈Jackie, has oc-
cupation, waitress〉 implies that there is little possibility
she has a yearly salary of over 100K dollars.

These correlations are very critical to the inference process
of the attack. How the attack exploits them to make inference
over users’ attributes will be discussed later.

When the dataset is published, the attacker utilizes her prior
attack graph and the ability of reasoning and computation
to make inference on some facts, which can be either deter-
ministic or probabilistic. Therefore, the attacker’s knowledge
graph would be updated while she is making inference. Links
could be added or deleted, and their weights may increase or
decrease. The final knowledge graph the attacker has after the
reasoning process is denoted as Gq (posterior attack graph).
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Fig. 1: An example of de-anonymization and privacy inference

III. KNOWLEDGE GRAPH BASED ATTACK ARCHITECTURE
OVERVIEW

The privacy attack process typically contains the following
steps. A social network data is anonymized using various
anonymization techniques (e.g., ID removal, data perturba-
tion), and then published. The attacker will first construct the
prior attack graph, then apply de-anonymization and privacy
inference techniques to infer private attributes, and finally mea-
sure privacy disclosure to recover some successfully attacked
subgraph.
A. Prior Attack Graph Construction

For de-anonymization, the attacker first construct a prior
attack graph, consisting of following three steps: 1) Initialize
with certain knowledge, 2) Add probabilistic knowledge, and
3) Complement according to correlations. More sophisticated
methods like knowledge graph identification [34] can be used
in the construction. The attacker now possesses two graphs, the
published anonymous data graph Ga and a prior attack graph
Gp. She will take them as inputs, and construct a posterior
attack graph as the output. This process can be divided into
two parts: de-anonymization and privacy inference.
B. De-anonymization

In the de-anonymization step, the attacker tries to map the
target users in Gp to nodes in Ga, which is mainly based on the
similarity of their attributes and relations. After the mapping,
the attributes attached with the anonymous node is also linked
to the target user. The updated prior attack graph is denoted
as G′p.

Fig. 1 gives a simple example. Suppose Bob is the target
of the attack in the social network. We assume all the links
here have confidence score of 1. The original network data
(Fig. 1(a)) is published after anonymization and perturbations
(Fig. 1(b)). Users’ names are removed and replaced with
pseudonyms. Their ages are generalized. The publisher might
add/delete a few links randomly, e.g., adding a link from Cindy
to Alice. These perturbations are supposed to be subtle such
that the utility of the network data is well preserved. The



attacker constructs a knowledge graph around Bob as the prior
attack graph (Fig. 1(c)). It is known to the attacker that Bob
has three followers and one following, and that Bob has an
age of over 50. Then the attacker maps Bob in the prior attack
graph to a node in the published graph. He first finds that node
B and D in Fig. 1(b) both have 3 followers and one following,
which is in accordance with Bob, so B and D are added to the
candidate set. Then the attacker notices that B has an age of
60 while D is 40. Obviously, the former is consistent with the
knowledge that Bob is older than 50. Thus, Bob is mapped
to node B. Accordingly, the attributes attached with node B
in the published graph is also linked to Bob. In this case, the
attacker knows that Bob is a doctor, so the link 〈Bob, has
occupation, doctor〉 is added to the graph (Fig. 1(d)).
C. Privacy Inference

In this step, the attacker complements and updates the attack
graph by inferring private attributes and relations that are not
contained in Ga or cannot be learned from Ga. The intrinsic
knowledge correlations play a key role in privacy inference.
As depicted in Fig. 1(c), the attacker knows a doctor has a
salary of over 50K dollars. The attacker has known that Bob
is a doctor at the de-anonymization step, so she infers that
Bob has a salary of “>50K” and adds the corresponding link
(the purple dashed line in Fig. 1(d)) to her knowledge graph.
D. Privacy Disclosure Determination

After inferring Bob’s private attributes and relations, the
attacker finally has a new knowledge graph, i.e., posterior
attack graph Gq . Graph Gq evolves from Gp, but there could
be new links or nodes added and confidence scores of links
could be increased or decreased, compared with the latter. The
variations of original and current confidence scores can be
regarded as a metric of the extent of privacy leakage. As for
a newly added link, it does not exist in Gp, which means
the attacker has no idea whether it is true or false. So it is
reasonable to set its original confidence score to follow the
common distribution known by everyone (such as uniform
distribution over all possible values, or normal distribution,
or power-law distribution). Thus, we define privacy leakage
as follows.

Definition 2 (Privacy disclosure): Given a piece of knowl-
edge/triple t which is considered to be sensitive to the user,
and t has a score of cp(t) in Gp and a score of cq(t) in Gq ,
the privacy t is considered to be disclosed if and only if it
satisfies

δ(cp(t), cq(t)) > ε(t), (1)

where δ is the distance function. If there are multiple sensitive
attributes, the Kullback-Leibler divergence can be used to
measure the distance of prior and posterior distributions. The
threshold ε can be set to different values for different triple t
(different subjects, predicate, or objects).

IV. KNOWLEDGE GRAPH BASED DE-ANONYMIZATION &
PRIVACY INFERENCE METHODS

In this section, we present the de-anonymization and privacy
inference methods based on the knowledge graph model.

A. Node Similarity

Before presenting the de-anonymization algorithm, we first
define the node similarity measurement. The similarity S(i, j)
between two user nodes i, j includes the attributes similarity
and the structural similarity scores.

Attribute Similarity: The attribute similarity score between
two nodes p ∈ VUp ,a ∈ VUa is denoted as SA(p, a). In a
knowledge graph, each user node s has some links connecting
to attribute nodes. Given a node p ∈ Gp (and a set of emergent
links E(p) = {〈p, r, o〉 | r ∈ R, o ∈ O} with confidence score
c for each triple 〈s, p, o〉), and a node a ∈ Ga (with a set
of links E(a) = {〈a, r, o〉 | r ∈ R, o ∈ O), the attribute
similarity between p and a is denoted by the probability
Pr(E(a) | E(p)) that these links are observed with the prior
knowledge. In this work, we use I(r, o) to denote whether the
link 〈p, r, o〉 from Gp appeared in Ga as 〈a, r, o〉. Then the
attribute similarity of p and a is defined as,

SA(p, a) = Pr(E(a)|E(p))

=
∏

I(r,o)=1

c(〈p, r, o〉) ·
∏

I(r,o)=0

(1− c(〈p, r, o〉). (2)

Notice that here we assume that the link that appeared with
100% confidence in the Gp will also appear in Ga. If this is
not the case (i.e., the link disappears due to the anonymizing
operation), we use c0 to denote the probability that this event
happens. Then the attribute similarity can be modified as
SA(p, a) =

∏
I(r,o)=1 c(〈p, r, o〉)·

∏
I(r,o)=0(1−c(〈p, r, o〉)c0).

Structural Similarity: In addition to attribute similarity,
structural similarity between two nodes is also considered.
We use the following information to compute the structural
similarity score SR(p, a) between p ∈ VUp and a ∈ VUa .

Inbound neighborhood Iu: For a user node u ∈ VUp (resp.,
VUa ), its inbound neighborhood Iu is a set of predicates of
relational links that are incident to u.

Outbound neighborhood Ou: This is a set of predicates of
relational links that are emergent from a node u.

The structural similarity between two nodes is

SR(p, a) = wiSi(p, a) + woSo(p, a), (3)

where the weights wi, wo are set to 0.5 as default, and Si(p, a),
So(p, a) denote the inbound similarity and outbound similarity,
computed by Jaccard index, e.g., Si(p, a) = J(Ip, Ia) =
|Ip∩Ia|
|Ip∪Ia| .

Node Similarity: Then we assign weights to SA, SR so the
node similarity S(p, a) of p and a is computed as

S(p, a) = wASA(p, a) + (1− wA)SR(p, a). (4)

Therefore, the similarity S is a normalized function.

B. De-anonymization Formulation

We assume all the users in the attacker’s prior knowl-
edge have corresponding nodes in Ga, that it, VUp ⊆ VUa
(Overlapped graphs will be discussed in Section VI). Suppose
π : VUp → VUa is an injective mapping from users in Gp to
anonymized user nodes in Ga. The goal of de-anonymization



is to find such a mapping π that maximizes the similarity
between Gp and Ga,

argmax Sim
π

(Gp, Ga), (5)

where Sim is a function that measures the similarity between
two graphs Gp and Ga after their user nodes are matched by
a function π. We compute Sim by summing up the similarity
scores of their matched user nodes.

Sim
π

(Gp, Ga) =
∑

(i,j)∈π

S(i, j), (6)

To transform the problem, we introduce a complete
weighted bipartite graph GB(VUp + VUa , EB), in which a
weight S(i, j) is assigned to each link eij ∈ EB . Any link
is a possible candidate match. Thus the de-anonymization
problem can be reduced to the maximum weighted bipartite
matching problem (also known as the assignment problem),
which can be further reduced to the minimum cost maximum
flow problem, and thus can be solved by many algorithms
[3], [4]. We implement an algorithm based on [1], which
has O(nmf) time complexity and O(n2) space complexity.
Herein, n = np+na is node number in GB , m is link number,
and f is the maximal flow value (f = O(np) in our case).
Notice that for real world social networks na can be very
large, even up to millions.

There are three challenges in implementing such method:
1) Constructing this complete bipartite graph has large space

and time complexity,
2) Finding the maximum weighted matching also has a large

time and space complexity for large scale network data,
3) Selecting proper features from the attributes and structural

similarity, and assign a proper weight for every feature
has a large impact on the de-anonymization performance.
This sometimes is more of an art than science.

Graph GB has O(m) = O(npna) links in total. To reduce
mapping space and complexity, we can decrease m by keeping
only links with largest weights, without computing similarities
of all pairs of nodes. Specifically, each user in VUp is linked to
top k candidate nodes in VUa . Here k is a predefined parameter
that balances accuracy and complexity. Since we have assumed
np << na, there will be many isolated nodes in VUa that can
be removed. Accordingly, na is reduced to O(knp), and thus
time and space complexity of solving the assignment problem
is lowered to O(k2n3p) and O(k2n2p), respectively.

In Algorithm 1 we build a light-weighted bipartite graph
with the top-k strategy while traversing Gp. The intuition is
that if two nodes match, their neighbors are also very likely
to match. Mapping space is thus lowered by utilizing users’
connections. We choose to perform breadth first search (BFS)
on Gp, which induces less error accumulation than DFS. In
the beginning, GB has no links. The algorithm selects an
outstanding initial node from Gp such that it can be mapped
with high confidence, which is very critical as it has an impact
on mapping other connected nodes. This initial node can be
picked with different ways. In our approach, we randomly pick

Algorithm 1 Bipartite Graph Construction Algorithm
Require: Anonymized graph Ga, prior attack graph Gp, parameter k.
Ensure: A bipartite graph GB .
1: Define EB = ∅, build a bipartite graph GB(VU

p + VU
a , EB).

2: Pick an initial node p0 ∈ VU
p .

3: Perform BFS in Gp starting from p0 (treat Gp as undirected graph).
4: for each p ∈ VU

p , following the order of BFS do
5: if p has a predecessor pr(p) then
6: Define N = ∅.
7: for each a ∈ Cpr(p) do
8: for each neighbor n of a do
9: if The relation of n, a is the same as that of p, pr(p) then

10: N = N ∪ {n}.
11: for each n ∈ N do
12: Calculate S(p, n).
13: Add top k similar nodes to Cp as p’s candidates.
14: else
15: for each a ∈ VU

a do
16: Calculate S(p, a).
17: Add top k similar nodes to Cp.
18: for each a ∈ Cp do
19: Attach weight S(p, a) to epa, EB = EB ∪ {epa}.
20: Remove isolated nodes in a ∈ VU

a .
21: return GB .

a node, compute the similarities between it and all nodes in
Ga, and check if there is a distinct disparity. If the range
of the similarities is greater than a threshold rmin (set to
0.8 as default), then pick this node as the initial node. As
an alternative, we can compute the structure/attribute score
of a node (such as the degree of the node, the size of the
ego network, the size of `-hop network, the set of attributes
of a node), and then sort nodes in decreasing order of the
structure/attribute score. We match the node in Gp with nodes
Ga having the largest score similarities.

Then BFS is performed in Gp where link directions are
ignored temporarily. Before mapping each node p ∈ Gp, the
algorithm checks whether p has a predecessor/father node (de-
noted as pr(p)) in the BFS. If so, it searches the neighbors of
pr(p)’s candidate matches, to get the top k similar candidates
for p. Otherwise, it searches all the nodes in VUa , which is
a relatively rare case. Among these top-k potential matching
candidates, we remove the candidates whose similarity with
the node p is less than a threshold smin. Then k links
connecting p with its candidates are added to GB and the
similarities are attached as weights. When BFS is done, all
the nodes in Gp are mapped. After removing isolated nodes
in VUa , we finish constructing the bipartite graph.

Obviously, the choice of parameter k and the weight thresh-
old smin will have a large impact on the accuracy of the final
mapping result. Small smin (and large k) will result in an
overblown bipartite graph with many unnecessary edges for
computing the maximum weighted matching. On the other
hand, large smin (and small k) will result in a reduced bipartite
graph missing some links from the real maximum weighted
matching. Later on our experiment will evaluate the impact of
these parameters. We found that typically k = 10 is enough for
building a bipartite graph containing the optimum maximum
weighted matching.



C. Path Ranking Based Privacy Inference

We now present out methods for inferring users’ private
attributes (including relations between users), which is re-
garded as link prediction in the knowledge graph. One way to
infer/predict new links is to utilize the path ranking algorithm
(PRA) proposed by Lao et al. [22], which was designed to
complement existing knowledge bases. Given any two nodes
s, o in the knowledge graph (G′p in our case), PRA finds a
set of paths P1, P2, . . . , Pn connecting s and o, which can
be interpreted as rules. The paths are combined by fitting a
binary classifier. The probability distributions of reaching o
from s along the paths are used as features. Based on logistic
regression, we can classify whether a triple 〈s, r, o〉 holds and
thus perform the link prediction task.

V. EXPERIMENT EVALUATIONS

We conduct de-anonymization and privacy inference exper-
iments on two real world social network datasets, and then we
present a comprehensive evaluation on our methods.

Dataset |VU | |VA| |EUU | |EUA| |EAA
p |

Google+ 107,614 15,691 13,673,453 378,880 2,262
Pokec 306,568 576 2,822,492 1,532,840 38

TABLE I: Statistics of two datasets
A. Methodology

1) Datasets: We simulate our methods on two real world
datasets, Google+ and Pokec, both from Stanford Network
Analysis Project (SNAP) [2]. Google+ is a social layer for
Google services operated by Google Inc., and Pokec is the
most popular online social network in Slovakia. They contain
rich network data and users’ profiles. For Google+, mean-
ingless and duplicate user profiles are removed when we
preprocess it; for Pokec, users who have incomplete or invalid
attributes are removed. Table I shows the statistics of the
preprocessed datasets. The relations in the two social networks
are oriented, and there is only one type of relation between
users: “follows”. For Pokec, the selected profiles contains 5
attributes: gender, location, age, height, weight, which are in
the form of a relational table. Profiles in Google+ contain
6 attributes: gender, institution, job title, last name, place,
university, yet they are not tabular as a user may have multiple
values for a single attribute, such as multiple job titles. The
preprocessed datasets are treated as original graphs G and used
as ground truth.

2) Anonymized Graph & Prior Attack Graph Generation:
Before performing de-anonymization on the datasets, firstly
we need to anonymize them in order to generate anonymized
graphs Ga. Given an original graph G(VU ∪VA, EUU ∪EUA∪
EAA), users’ private data is contained in EUU∪EUA, represent-
ing relations and profiles correspondingly. To anonymize G,
both relations and profiles should be perturbed. For the former,
we adopt the sampling method which is used in previous
works [14], [15], [28]. Specifically, links in EUUa are randomly
sampled from EUU with a sample ratio sra. All the links’
confidence scores are set to 1. Since the Google+ profiles are

not tabular, there exists few appropriate perturbation policies
and algorithms for it. Thus, EUAa are also sampled from EUA
for Google+. For Pokec, we adopt the Flash algorithm [20]
that achieves K-anonymity (K = 10, use capital K for
disambiguation) to generalize the profiles. In addition, user
IDs in VU are removed and substituted with pseudonyms. It
is assumed that VA stays the same when Ga is generated, and
EAA = EAAa = ∅.

When we generate Gp, the sampling is slightly different.
First, we select a few users from VU to VUp by some means
(stated later) as the attacker’s target users. Then EUUp , EUAp
are randomly sampled from only the relations and profiles
relevant to these users, at the sample ratio srp. Likewise,
VAp = VA is assumed. Besides, we generate links for EAAp by
calculating conditional probabilities between attributes (Pr(c |
b) = Pr(b, c)/Pr(b) = n(b, c)/n(b), for any b, c ∈ VA).

Given a user sampling ratio usr, three sampling methods
are used to select target users VUp .
1) RS: Randomly sample from VU at the ratio usr;
2) EG: Sample np users within an ego network of a user

(np = na × usr);
3) RW: Sample np users from VU based on random walk

(np = na×usr), which reflects how people know friends.
Later on, we will evaluate the influence of different user

sampling methods on the attack performance.
B. Evaluation on De-anonymization

To evaluate our de-anonymization algorithm, we utilize
accuracy (ratio of correct matches) and run time as metrics to
measure utility and complexity. Since experiments on Google+
and Pokec are alike, we focus on Google+ unless there is
a difference. The default parameter settings are k = 10,
smin = 0.5, usr = 0.005, sra = srp = sr, sr = 0.8,
wA = 0.5, and RW is chosen as the default user sampling
method as it is most practical. We run all programs on Ubuntu
14.04.3 LTS on a server with Intel R© Xeon R© 2.4GHz 12-core
CPU and 32GB memory.

Fig. 2 effectively shows how the settings of k and smin
influence de-anonymization accuracy and time complexity. As
depicted in Fig. 2(a), increasing k (recall that we match a user
with the top k users from Ga in building the bipartite graph)
can improve accuracy when k ≤ 10 but has a minor effect
when k > 10. This is because accuracy is bounded by sample
ratio sra, srp (see details in Fig. 4). Yet run time constantly
increases with the growing k (Fig. 2(b)). Therefore, we choose
k = 10 as default. It is revealed in Fig. 2(c),2(d) that smin has
negative correlations with accuracy and run time so it balances
the tradeoff between them, which is in accordance with our
intuition.

Fig. 3(a) indicates that run time is in proportion to usr but
accuracy almost keeps stable, because usr decides the number
of target users to be matched, but does not affect the mapping
algorithm. Fig. 3(b) shows that the de-anonymization method
has best accuracy when 0.4 ≤ wA ≤ 0.9. Recall wA, 1 −
wA are the weights assigned to the attribute similarity and
relation similarity of two nodes. Thus, it is indicated that both
of the two features play an important role in measuring node
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Fig. 2: The impact of parameters k, smin on accuracy and runtime.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.005  0.01  0.015  0.02
 30

 35

 40

 45

 50

 55

 60

 65

A
c
c
u
ra

c
y

R
u
n
 T

im
e
(s

)

User Sample Rate usr

Acc
Time

(a) Accuracy, Runtime vs usr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1
 0

 5

 10

 15

 20

 25

 30

 35

 40

A
c
c
u
ra

c
y

R
u
n
 T

im
e
(s

)

w
A

Acc
Time

(b) Accuracy vs wA

Fig. 3: Impact of parameters on accuracy and time complexity

similarity. But this figure also implies that structural features
help less compared with attribute features. This is because
nodes of Gp is a small subset of those of Ga, which could
results in great structural discrepencies between their nodes.
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Recall sra, srp are the link sampling ratios of GA, Gp,

which reflect information fidelity after anonymization and the
amount of the attacker’s prior knowledge. They intrinsically
determine the de-anonymizability of the published graph. As
shown in Fig. 4(a), our de-anonymization method has larger
accuracy when sra, srp are closer to 1. As shown in Fig. 4(b),
sra has a more dominant effect on run time than srp, which
can be explained by np << na. To be practical, we set
sra = srp = 0.8.
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After adjusting these parameters, we make a comparison

of three different user sampling methods (Fig. 5). In the left
side is run time of 3 phrases of de-anonymization and total
time, and the right side compares the methods in terms of
accuracy. It is shown that RS has the largest complexity and

the worst accuracy, RW has the best accuracy, and EG is the
most efficient method. We can also learn from this figure that
the main time complexity lies in loading dataset and building
bipartite graph.

Tests on Pokec have similar results, except that the accuracy
is lower (< 0.2). This is because 10-anonymity was applied
to the original profiles we tested, so it is much harder to
differentiate users by attribute features. In such case, using
more refined structure-based features will greatly improve the
accuracy, such as `-hop neighborhood, closeness centrality,
Top-K reference distance, landmark reference distance [15].
We will incorporate them into our method as a future work.

C. Evaluation on Privacy Inference

To validate our privacy inference method, we run PRA
algorithm on the two datasets. Since the PRA code can easily
take up upwards of 20GB of RAM for large scale graphs, we
did our simulation on a sampled graph (3K users for Pokec,
540 users for Google+). The profiles and relations are stored
in the form of triples. For Pokec, the inference is performed
separately without the involvement of de-anonymization. We
randomly sample some triples as the training set at a sample
ratio, which simulates the attacker’s incomplete knowledge,
and the rest triples act as ground truth. We also generate a few
links for EAAp (attribute correlations) and add them to the train
set. Given a query 〈s, r〉 (subject and relation), PRA outputs
a waiting list of candidates for objects. Mean reciprocal rank
(MRR), a criterion used in information retrieval, is adopted to
measure the inference efficacy. We also modify precision@k
and re-defined a metric hit@k. It refers to the ratio of queries
who have a hit in the top k candidates, which better applies to
our scenario since most relations in Pokec are functional. For
Google+, we conduct privacy inference based on G′p (the up-
dated prior attack graph after de-anonymization). Performance
is evaluated by varying the link sampling ratio sr.

For either dataset, an attributive and a relational link types
are selected as secrecy. As shown in Fig. 6, our method
performs better than random guess (RG) and is proportional to
sample ratio (or sr), which indicates that the more prior knowl-
edge the attacker possesses, the stronger inference ability she
has. Besides, the running time of our testing is only a few
seconds. However, the performance on Google+ is undesirable
because of two reasons: 1) G′p contains false information
due to imperfect de-anonymization conducted on the data
set; 2) PRA relies strongly on topological information of the
knowledge graph, but our graph sampling might have caused
damage to that. However, the results are still much better



than random guess, which verifies the feasibility of inferring
privacy using knowledge graphs.

VI. DISCUSSION

Overlapped Graphs: So far we assumed that every user
in Gp has a match in Ga, that is, VUp ⊆ VUa . But in reality,
it is possible that a user in the attacker’s prior knowledge
does not exist in the original dataset, and thus not in Ga.
In this case, Algorithm 1 can be adjusted slightly. Suppose
π : VUp → VUa ∪ {⊥} is an “injective” mapping from users in
Gp to anonymized user nodes in Ga plus a no-match indicator
⊥ ( there can be multiple users in Gp mapped to ⊥). When
constructing the bipartite graph GB , np fake nodes are added
as candidates such that each node in VUp is linked to a different
fake node with a weight w0. One user would be mapped to a
fake node if the weights of her links to other candidates are
lower than w0, i.e., it is very likely she has no match in Ga.
The key here is to select a proper weight threshold w0.

Reducing Complexity: Our extensive evaluations show that
the major time cost lies in the construction of the bipartite
graph GB , i.e., the set of links and the corresponding link
weights. We proposed to use only top-k possible matching
nodes for each node in the prior attack graph. The challenge is
how to efficiently find the k candidates for each of nodes in Gp
among na nodes from Ga without incurring large amount of
computation. Besides, there is a linear time 1/2-approximation
algorithm for maximum weighted matching for general graphs
[32], which can be utilized to further reduce the matching time.

VII. RELATED WORK

The last decade witnesses large quantities of research works
on privacy issues in social network data publishing. Various
attack and protection techniques have been proposed. Most of
them employ privacy models derived from k-anonymity [39],
by assuming the attacker’s possession of specific limited prior
knowledge. Unfortunately, their anonymization techniques are
vulnerable to attackers with stronger background knowledge
than what is assumed. For instance, k-degree anonymity [24]
was proposed to prevent the attacker, who knows the number
of neighbors of an individual, from identifying her from the
published graph based on vertex degree. However, it can-
not defend against community re-identification [41]. Similar
anonymization techniques proposed in succession include k-
neighborhood anonymity [42], [46] (against 1-neighborhood
attack and 1∗-neighborhood attack, respectively), k-candidate
anonymity [12], k-automorphism [47], k-isomorphism [6], k-
structural diversity [41] (derived from l-diversity [25]), k2-
degree anonymity [40], and t-closeness [7]. Unfortunately,
none of these proposals are built on a complete or realistic
attacker model. In addition, there are some anonymization
techniques based on clustering/aggregation [11], [23], differ-
ential privacy [33], [35], [36], [45]and random walk [26].
However, they either are vulnerable to existing attacks or do
not preserve data utility well.

Other previous methods focus on graph mapping attacks
(also called structure-based de-anonymization), in which the

attacker attempts to de-anonymize/re-identify users in the
network, with only structural/toplogical information as back-
ground knowledge. Most of these attacks are seed-based,
including [5], [8], [16], [21], [28], [29], [31], [38], [44].
They usually consist of two phases: seed identification and
mapping propagation. In other words, a few specific users are
identified somehow as seeds, and mapping users and nodes is
iteratively conducted from the seed users based on structural
characteristics of the data graph. There are also works that
do not need seed users, such as [15], [30], which are based
on Bayesian model and optimization respectively. None of
the above works consider the scenarios where some of the
attacker’s background knowledge might be probabilistic.

There are also some methods that try to construct an attacker
model. Hay et al. [11] classified adversary knowledge into
three variants: vertex refinement queries, subgraph queries, and
hub fingerprint queries. However, they either do not model
the real capabilities of the attacker or express little adversarial
knowledge. Narayanan et al. [28] assumed that the attacker has
an auxiliary user network with both probabilistic aggregates
and individual information, yet this model cannot capture some
types of background information, like uncertain user relations.

VIII. CONCLUSION

In this work, we build a realistic and comprehensive model
of the attacker’s background information with knowledge
graphs, for better expressing attack process and quantifying
privacy disclosure, which would provide a foundation for
a generic anonymization technique. Our evaluations on two
real-life social network datasets demonstrate its powerfulness
and efficiency. There are a number of challenges left for
future research. The first is to design an efficient method for
constructing the bipartite graph for de-anonymization purpose.
Second, we will include more features in matching nodes from
the prior knowledge graph and nodes from the anonymized
graph. The third is to subtly utilize knowledge correlations
and probability distributions in the privacy inference process.
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[47] ZOU, L., CHEN, L., AND ÖZSU, M. T. K-automorphism: A general
framework for privacy preserving network publication. PVLDB 2, 1
(2009), 946–957.


